

ARTICLE

The Journey and Potential of Organ-on-a-Chip Technology

Theodore Elijah, James Clarence, Benjamin Anthony, and Christopher William*

Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA

*Corresponding author: christopherwil@email.unc.edu

(Received: 05 March 2021; Revised: 28 April 2021; Accepted: 04 July 2021; Published: 18 July 2021)

Abstract

Organ-on-a-chip technology represents a groundbreaking advancement in biomedical engineering, poised to revolutionize drug development, disease modeling, and personalized medicine. These microfluidic devices mimic the physiological and mechanical properties of human organs, providing a more accurate representation of human biology compared to traditional in vitro models. The journey of organ-on-a-chip technology began with the integration of microfabrication techniques and cell biology, evolving into sophisticated platforms capable of simulating organ-specific functions and responses. Key milestones in this journey include the development of lung-on-a-chip, liver-on-a-chip, and heart-on-a-chip, each offering unique insights into organ-level processes and drug interactions. These devices enable high-throughput screening and detailed analysis of cellular behavior in a controlled environment, significantly reducing the reliance on animal models. The potential of organ-on-a-chip technology is vast, with applications extending to toxicity testing, disease modeling, and the study of complex biological systems. Personalized medicine stands to benefit immensely, as patient-specific chips could allow for tailored treatment plans based on individual responses. Despite the challenges in replicating the full complexity of human organs and scaling production, ongoing advancements and interdisciplinary collaborations continue to enhance the capabilities and adoption of organ-on-a-chip technology, heralding a new era in biomedical research and healthcare.

Keywords: Biomedical Engineering; Disease Modeling; Drug Development; Microfluidic Devices; Organ-on-a-Chip; Personalized Medicine

Abbreviations: ECM: Extracellular Matrix, MOC: Multi-organ chip, OoC: Organ-on-a-chip, PDMS: Polydimethylsiloxane, PEEK: Polyetheretherketone, PK-PD: Pharmacokinetic and pharmacodynamic

1. Introduction

Organ-on-a-chip (OoC) technology combines microfluidics, tissue engineering, and cutting-edge biomaterials to create miniaturized models that mimic the intricate structures and functions of human organs. These innovative platforms offer a promising alternative to traditional cell cultures and animal models, allowing researchers to study organ physiology, disease pathogenesis, and drug effects with unprecedented accuracy (Fig. 1).

Leveraging recent advances in stem cell technology and 3D bioprinting, OoC models have been developed for various organs, including the lung, brain, heart, liver, kidney, skin, and gut. From investigating COVID-19 and influenza virus infections to exploring stem cell therapies and the impacts of shear stress, these biomimetic systems have numerous applications in drug discovery, toxicology, and personalized medicine. This article delves into the design principles, materials, and fabrication

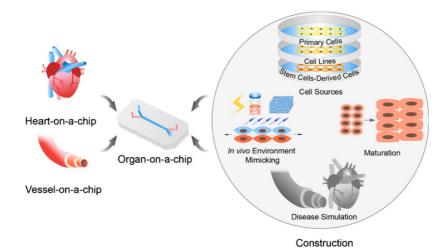


Figure 1. Challenges in organ-on-chip technology.

techniques of OoC technology, showcasing its potential to revolutionize biomedical research and pave the way for more effective treatments [1, 2, 3].

1.1 Organ-on-a-Chip Design Principles

The design of organ-on-a-chip (OoC) systems is guided by the desired functionalities and research questions [4]. The conceptualization and design of single-organ chips involve deciding on a top-down (using pre-formed tissue) or bottom-up (building tissue from isolated cells) approach, and choosing an appropriate architecture (solid organ or barrier tissue) based on the organ being modeled [5]. Different types of OoC devices have been developed, including:

- · Lung-on-a-chip
- · Heart-on-a-chip
- · Kidney-on-a-chip
- Liver-on-a-chip [6]

Key components of OoC systems include:

- · Microfluidics
- Living cell tissues
- Stimulation/drug delivery
- Sensing

These components enable the study of organ-specific functions and responses [7]. However, developing fully autologous OoC models with multiple cell types remains a technical challenge (Fig. 2) [8].

2. Materials and Fabrication

Selecting appropriate biomaterials is crucial for organ-on-a-chip (OoC) systems as they need to mimic the native tissue environment while meeting specific requirements. The key criteria for biomaterial selection include:

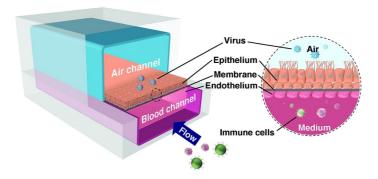


Figure 2. Human organ chips enable rapid drug repurposing for COVID-19.

- **Biocompatibility:** Materials must be non-toxic and support cell growth and function.
- **Biodegradability:** For certain applications, biodegradable materials may be preferred to mimic the dynamic nature of the extracellular matrix.
- **Mechanical Properties:** Materials should have suitable mechanical properties to replicate the stiffness, elasticity, and other physical characteristics of the target organ.
- **Sterilization Compatibility:** Materials must withstand sterilization techniques like gamma irradiation or ethylene oxide without compromising their properties.
- **Surface Treatment:** Surface treatments like protein/ECM coatings or passivation may be required to promote or prevent cell adhesion as per the application.

A wide range of biomaterials are used in OoC fabrication, including:

1. Synthetic Materials:

- Elastomeric: Polydimethylsiloxane (PDMS), polyester-toner, poly(lactic-co-glycolic acid) (PLGA), and poly(octamethylene maleate acrylate) (POMaC).
- Thermoplastic: Poly(methyl methacrylate) (PMMA), polyetheretherketone (PEEK), and PEEK or poly(glycolic acid) (PGA) blends.

2. Natural Biomaterials:

• Collagen, gelatin, fibrin, hyaluronic acid, chitosan, and alginate are used to better mimic the extracellular matrix in OoC systems.

Fabrication techniques for microfluidic OoC systems include:

- Lithography
- Injection molding
- · Hot embossing
- Etching
- · 3D printing

These techniques can be used with both synthetic and natural biomaterials to create complex microfluidic structures, porous membranes, and 3D vascular networks, enabling the recreation of tissue barriers and cell-cell/cell-material interactions (Fig. 3).

Organ-on-a-chiptechnology is rapidly evolving, with ongoing research focused on integrating conductive biomaterials, physical and chemical sensors, and analytical biosensors to enable dynamic

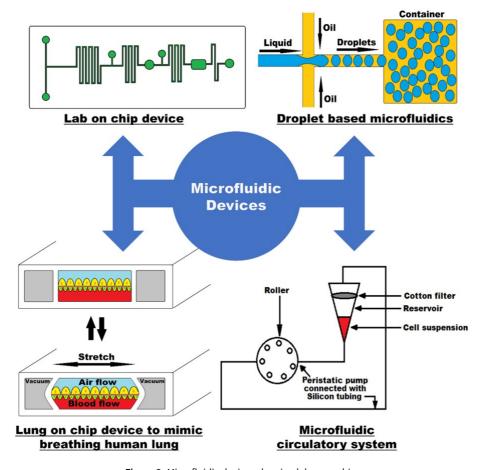


Figure 3. Microfluidic devices showing lab-on-a-chip.

control and monitoring of the tissue microenvironment. However, challenges like material selection, cost, integration complexity, and translation to in vivo conditions need to be addressed for further advancements in the field [9, 10].

2.1 Sterilization and Surface Treatment

Sterilization of organ-on-a-chip (OoC) devices is crucial to prevent contamination and ensure the validity of experimental results. Common sterilization methods include:

- UV Irradiation: Exposure to ultraviolet (UV) light is an effective way to inactivate microorganisms on the device surface.
- Ethanol Treatment: Immersing the device in ethanol solutions can effectively disinfect the surfaces.
- Gamma Irradiation: High-energy gamma rays can penetrate and sterilize the entire device, including complex microfluidic channels.
- Ethylene Oxide Treatment: This gaseous sterilization method is suitable for heat-sensitive materials but may require additional aeration to remove residual toxicity.

The choice of sterilization method depends on the materials used in the OoC device, as some tech-

niques may degrade or alter certain materials [11]. Surface treatment is another crucial aspect of OoC device preparation. It ensures biocompatibility and promotes or prevents cell adhesion as desired. Common surface treatments include:

- **Protein Coatings:** Coating surfaces with proteins like fibronectin, laminin, or collagen can enhance cell adhesion and proliferation.
- Extracellular Matrix (ECM) Coatings: Using tissue-specific ECM coatings can create a more physiologically relevant microenvironment for cells.
- Passivating Agents: Substances like pluronic acid can create non-fouling surfaces to prevent undesirable cell adhesion in certain applications.

Surface treatments are particularly important for:

- 1. **3D Cultures:** Preventing dissociation of spheroids and organoids.
- 2. Barrier Tissue Models: Forming confluent monolayers in gut and blood-brain barrier models.

To create higher-fidelity physiological models, tissue-specific and disease-specific ECM coatings may be employed. For instance, inducing crypt-like structures in gut-on-a-chip models [12]. Inflammation and viral infections like COVID-19 and influenza can be studied using appropriately treated OoC devices, providing insights into disease mechanisms and potential therapeutic interventions [13, 14].

3. Cell Source Selection

The selection of appropriate cell sources is a critical consideration in organ-on-a-chip (OoC) models, as it directly impacts the physiological relevance and functionality of the engineered tissue constructs. The key factors that guide cell source selection include:

- 1. **Patient Specificity:** Depending on the research objectives, primary cells derived from patient samples may be preferred to recapitulate patient-specific disease conditions or drug responses. However, these cells often have limited expansion capacity and functional time windows.
- Intrinsic Cell Functionality: Immortalized cell lines, while offering unlimited expansion potential, may not fully recapitulate the desired organ-specific functions due to genetic and phenotypic alterations acquired during immortalization.
- 3. **Expansion Capacity:** Stem cells, including embryonic, induced pluripotent, and adult stem cells, are emerging as promising cell sources for OoC models. They offer the ability to differentiate into diverse cell types and provide a renewable source of cells with high expansion potential.
- 4. Supporting Cell Types: Many organs comprise multiple cell types that interact and contribute to overall organ function. Incorporating supporting cell types, such as endothelial cells, fibroblasts, or immune cells, may be necessary to recreate the complex tissue microenvironment.
- Functional Time Window: The functional lifespan of the engineered tissue construct is an important consideration, as some applications may require long-term culture or repeated dosing studies.

The choice of cell source often involves trade-offs between these factors, and a combination of different cell types may be employed to achieve the desired level of physiological relevance and experimental robustness. For instance, patient-derived primary cells can be co-cultured with immortalized cell lines or stem cell-derived supporting cell types to create more physiologically relevant OoC models (Fig. 4) [15, 16].

Stem cells, in particular, have garnered significant interest due to their ability to differentiate into various cell types, including hard-to-obtain or disease-specific cell populations. This versatility al-

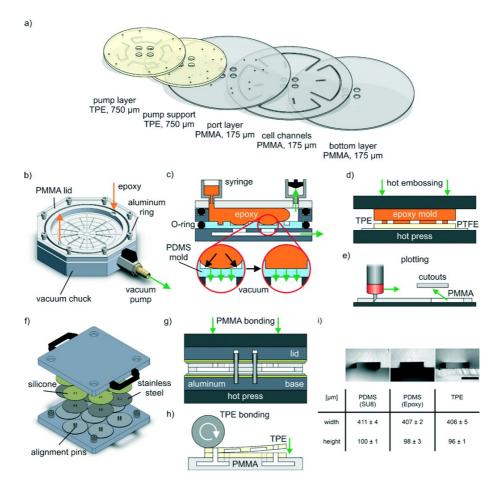


Figure 4. Microfluidic disc design and fabrication.

lows researchers to study viral infections like COVID-19 and influenza, investigate inflammation and immune responses, and explore the potential of stem celltherapies in a controlled and physiologically relevant setting [17, 18].

3.1 Culturing Conditions and Peripherals

Maintaining appropriate culturing conditions and peripherals is crucial for the successful operation and physiological relevance of organ-on-a-chip (OoC) systems. Here are some key considerations:

1. Cell Culture Medium and Perfusion Circuits:

- Selecting a suitable cell culture medium that provides essential nutrients and growth factors is vital for supporting cell viability and function within the OoC device [19].
- Establishing a continuous perfusion circuit ensures a steady supply of fresh medium and efficient removal of cellular waste products, mimicking the in vivo environment [20].
- Gravity-driven or pump-based perfusion systems can be employed to achieve physiologically relevant fluid flow and shear stress conditions [21].

2. Microenvironmental Control:

· Precise control and monitoring of key microenvironmental parameters, such as shear stress,

oxygen levels, and pH, are essential for recreating in vivo-like conditions [22].

- Microfluidic systems with compartmentalized fluidic channels and porous barriers enable coculture of different cell types, facilitating tissue-tissue crosstalk and mimicking organ-level interactions [11].
- Integration of biomedical sensors, including optical sensors and microelectrode arrays, allows continuous monitoring of physical and chemical parameters within the OoC system [12].

3. Cell Positioning and Tissue Architecture:

- Achieving accurate cellular positioning and polarization is crucial for recreating the native tissue architecture and cell-cell/tissue-tissue interfaces [11].
- Advances in microfluidic technology, such as on-chip micropumps or passive gravity-driven perfusion, have enabled stable, long-term fluid flow and interconnection of organ chambers in multi-organ chip (MOC) systems [12].

To ensure proper operation and maintain physiological relevance, regular visual inspection and monitoring of OoC systems are necessary (Fig. 5).

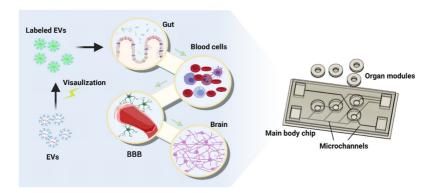


Figure 5. Modular MOOC-based GBA-on-a-chip.

- Checking for air bubbles, obstructions, or microbial contamination that could disrupt fluid flow or compromise experimental conditions [19].
- Maintaining stable microfluidic dynamic properties, such as flow rates and pressure gradients, to facilitate efficient mass transfer at the tissue-fluid interface [22].
- Adjusting and optimizing physicochemical parameters, like pH and oxygen levels, to match the specific requirements of the cultured cells or tissues.

Shear stress, a critical factor in many physiological processes, can be precisely controlled and studied in OoC systems through careful regulation of fluid flow rates and channel geometries. This capability enables investigations intoviral infections like COVID-19 and influenza, as well as inflammation and stem cell responses under physiologically relevant conditions.

4. Single-Organ Chip Applications

Single-organ chips offer a high degree of biological authenticity, allowing researchers to evaluate the response of a specific organ with precision. In early drug discovery, these models can be invaluable for target validation, candidate selection, and safety assessment, with a focus on recapitulating human-specific pathways and mechanisms. As the drug development process progresses, single-organ chips can be utilized for safety pharmacology testing, ADME-Tox assessment, and identifying

the right patient population for enhanced efficacy. A recommended strategy is to focus on developing combined safety and efficacy organ-on-a-chip (OoC) models to provide a more holistic approach [23].

Organ chips have been extensively used to model complex diseases and rare genetic disorders, study host-microbiome interactions, recapitulate whole-body inter-organ physiology, and reproduce human clinical responses to drugs, radiation, toxins, and infectious pathogens [24]. Specifically:

- Lung chipshave replicated inflammatory responses, nanoparticle absorption, drug-induced pulmonary edema, and viral infection dynamics for influenza and COVID-19.
- Liver chips have replicated drug metabolism, drug-drug interactions, drug-induced hepatotoxicity, and viral infection and life cycle of hepatitis B virus.
- Heart chips have replicated cardiotoxic effects of drugs like doxorubicin.
- Intestine chips have modeled COVID-19 infection and gastrointestinal symptoms, and supported co-culture of intestinal epithelium with commensal bacteria or complex gut microbiome [24].

Single-organ chips allow for high-fidelity modeling of specific organ functions and responses, without the added complexity of multi-organ interactions. They are well-suited for studying tissue-specific responses to compounds or stimuli, as well as evaluating the function of a particular organ in isolation. Examples include liver, cardiac, tumor, and adipose chips, among others (Fig. 6) [15].

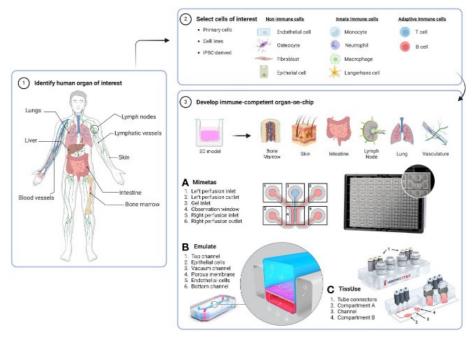


Figure 6. Workflow for generating an immunocompetent OoC.

4.1 Multi-Organ Chip Systems

Multi-organ systems provide a framework to examine the potential interaction of one organ with at least one other, principally through the exchange of metabolites or soluble signaling molecules. The choice of a single-organ or multi-organ system depends on the desired functionalities needed for the system to be a good model of the physiological processes. Recent advancements have led to

the development of 'multi-organ-on-chip' (MOC) models, which connect multiple organ chambers to resemble an ideal pharmacokinetic and pharmacodynamic (PK-PD) model [23]. These MOC systems enable the study of organ-organ interactions, drug metabolism, and systemic effects in a more physiologically relevant manner. Proposed and potential applications of long-term testing in MOCs include:

- 1. **Drug Testing and Toxicology:** Evaluating the effects of drug candidates on multiple organs simultaneously, providing insights into systemic toxicity and off-target effects.
- 2. **Disease Modeling:** Recreating complex disease pathologies that involve multiple organ systems, such as metabolic disorders, autoimmune diseases, and cancer metastasis.
- 3. **Drug Screening:** Identifying lead compounds with favorable pharmacokinetic profiles and minimal adverse effects across multiple organ systems.
- 4. **Studying Cancer Metastasis:** Investigating the mechanisms of cancer cell migration and colonization in distant organs, which is a critical aspect of cancer progression and treatment.

Multiple organ-on-a-chip models have been developed to study interactions between different organs, such as the intestine-liver-breast cancer and intestine-kidney-liver models. These systems enable the investigation of organ crosstalk, metabolic interactions, and the systemic effects of drugs or toxins on multiple organ systems simultaneously (Fig. 7).

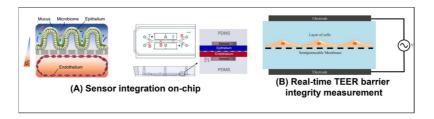


Figure 7. Human Caco2 intestinal epithelial cells.

Organ-on-a-chip technology is rapidly evolving, with multi-organ-on-a-chip systems that integrate multiple organ models being developed to better capture the complexity of human physiology and organ-organ interactions. These advanced systems hold great promise for improving our understanding of human biology, disease mechanisms, and drug responses, ultimately paving the way for more effective and personalized therapeutic interventions.

5. Regulatory Acceptance and Challenges

The validation and regulatory acceptance of organ-on-a-chip(OoC) models have undergone a significant shift, moving away from a focus on reliability and reproducibility to a more context-specific "qualification" approach. This transition requires close collaboration between various stakeholders, including technology developers, end-users, and regulators.

While OoC models hold promise for applications across the drug discovery and development workflow, from early target validation to preclinical safety and efficacy testing, their regulatory acceptance remains limited. Several challenges hinder the widespread adoption of these innovative platforms:

• Fragmentation and Lack of Standardization: The rapid pace of innovation in the field has led to fragmentation, resulting in a lack of standardization and harmonization in model development and qualification processes. This diversity makes it difficult to distinguish which OoC models will have longevity and be successful in the long term.

- Absence of 'Gold Standard' References: The lack of established "gold standard" references and
 performance criteria for specific contexts of use poses a significant gap, hindering the qualification
 of OoC models.
- Need for Increased Collaboration: Better communication and collaboration between different stakeholders, including the establishment of consortia and networks, are crucial to facilitate harmonization and address the challenges of regulatory acceptance [24].

To overcome these hurdles and pave the way for broader regulatory acceptance, several key recommendations have been proposed:

- 1. **Early and Continuous Engagement with Regulators:** Proactive engagement with regulatory agencies, such as the FDA, is essential to increase their familiarity with OoC technologies and facilitate regulatory acceptance.
- Establishment of Independent Testing Centers: Setting up independent testing centers to qualify OoC models against reference compounds and performance criteria can provide standardized evaluation and validation.
- 3. **Increased Data Sharing and Publication:** Promoting data sharing and publishing model qualification methods can help standardize the field and enhance transparency [25].

The organ-on-a-chip technology is gaining regulatory attention, with agencies like the FDA collaborating with companies and institutes to evaluate its potential applications. However, overcoming the challenges of regulatory acceptance and qualification will require concerted efforts from all stakeholders, fostering an environment of open communication, collaboration, and a shared commitment to advancing this transformative technology (Fig. 8) [26].

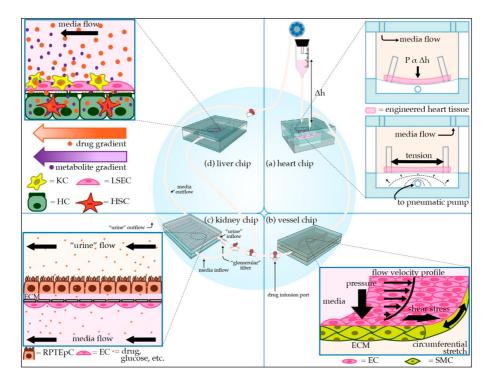


Figure 8. Schematic of modular microphysiological system.

5.1 Future Outlook and Opportunities

The organ-on-a-chip technology has made remarkable strides in recent years, offering a promising alternative to traditional cell culture and animal models. These innovative platforms mimic the intricate structures and functions of human organs, enabling researchers to study disease mechanisms, drug effects, and potential therapeutic interventions with unprecedented accuracy. However, the widespread adoption of this technology hinges on overcoming challenges related to standardization, regulatory acceptance, and increased collaboration among stakeholders. While significant progress has been made, further advancements are still needed to fully unlock the potential of organon-a-chip systems. Continued research and development, coupled with open communication and data sharing among researchers, technology developers, and regulatory agencies, will be crucial for addressing remaining hurdles. As these efforts progress, organ-on-a-chip technology is poised to revolutionize biomedical research and pave the way for more effective, personalized treatments, ultimately improving patient outcomes and advancing human health.

6. Conclusion

Organ-on-a-chip technology is transforming the landscape of biomedical research, offering unprecedented precision in mimicking human organ systems. This innovative approach bridges the gap between conventional in vitro models and the complexity of human biology, providing more reliable data for drug development and disease studies. The journey of this technology has seen significant milestones, from the creation of simple microfluidic devices to sophisticated platforms capable of emulating the intricate dynamics of organs such as the lung, liver, and heart. The potential of organ-on-a-chip technology lies in its ability to revolutionize drug testing, reduce reliance on animal models, and pave the way for personalized medicine. By creating patient-specific chips, researchers can tailor treatments to individual responses, enhancing therapeutic efficacy and reducing adverse effects. Furthermore, these devices hold promise for advancing our understanding of disease mechanisms, enabling the development of novel interventions. Despite the challenges in fully replicating the complexity of human organs and scaling up production, ongoing interdisciplinary collaborations and technological advancements are steadily overcoming these hurdles. As organ-on-a-chip technology continues to evolve, it is poised to become an integral tool in the future of biomedical research, driving innovation and improving healthcare outcomes.

References

- [1] Max Mastrangeli, Sylvie Millet, Janny van den Eijnden-van Raaij, et al. "Organ-on-chip in development: Towards a roadmap for organs-on-chip". In: *ALTEX-Alternatives to animal experimentation* 36.4 (2019), pp. 650–668.
- [2] Malcolm Haddrick and Peter B Simpson. "Organ-on-a-chip technology: turning its potential for clinical benefit into reality". In: *Drug discovery today* 24.5 (2019), pp. 1217–1223.
- [3] Boyang Zhang and Milica Radisic. "Organ-on-a-chip devices advance to market". In: *Lab on a Chip* 17.14 (2017), pp. 2395–2420.
- [4] Seung Hwan Lee and Jong Hwan Sung. "Organ-on-a-chip technology for reproducing multiorgan physiology". In: *Advanced healthcare materials* 7.2 (2018), p. 1700419.
- [5] Jeremy D Caplin, Norma G Granados, Myra R James, Reza Montazami, and Nastaran Hashemi. "Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology". In: Advanced healthcare materials 4.10 (2015), pp. 1426–1450.
- [6] HÜSEYİN AVCI, FATMA DOĞAN GÜZEL, Salim Erol, and Ali Akpek. "Recent advances in organ-on-a-chip technologies and future challenges: a review". In: *Turkish Journal of Chemistry* 42.3 (2018), pp. 587–610.

- [7] Ozlem Yesil-Celiktas, Shabir Hassan, Amir K Miri, Sushila Maharjan, Rawan Al-kharboosh, Alfredo Quiñones-Hinojosa, and Yu Shrike Zhang. "Mimicking human pathophysiology in organ-on-chip devices". In: *Advanced Biosystems* 2.10 (2018), p. 1800109.
- [8] Jasmin C Haderspeck, Johanna Chuchuy, Stefan Kustermann, Stefan Liebau, and Peter Loskill. "Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling". In: *Expert opinion on drug discovery* 14.1 (2019), pp. 47–57.
- [9] Ranjith K Kankala, Shi-Bin Wang, and Ai-Zheng Chen. "Microengineered organ-on-a-chip platforms towards personalized medicine". In: Current Pharmaceutical Design 24.45 (2018), pp. 5354–5366.
- [10] Soohee Cho and Jeong-Yeol Yoon. "Organ-on-a-chip for assessing environmental toxicants". In: *Current opinion in biotechnology* 45 (2017), pp. 34–42.
- [11] Sang Hun Lee and Bong-Hyun Jun. "Advances in dynamic microphysiological organ-on-a-chip: Design principle and its biomedical application". In: *Journal of industrial and engineering chemistry* 71 (2019), pp. 65–77.
- [12] João Ribas, Hossein Sadeghi, Amir Manbachi, Jeroen Leijten, Katelyn Brinegar, Yu Shrike Zhang, Lino Ferreira, and Ali Khademhosseini. "Cardiovascular organ-on-a-chip platforms for drug discovery and development". In: *Applied in vitro toxicology* 2.2 (2016), pp. 82–96.
- [13] Antonio Lorenza, Gabriella Caterina, and Bianca Isabella. "Machine Learning Techniques for Accurate Prediction of Proteins Function". In: Fusion of Multidisciplinary Research, An International Journal (FMR) 1.2 (2020), pp. 85–96.
- [14] Samad Ahadian, Robert Civitarese, Dawn Bannerman, Mohammad Hossein Mohammadi, Rick Lu, Erika Wang, Locke Davenport-Huyer, Ben Lai, Boyang Zhang, Yimu Zhao, et al. "Organon-a-chip platforms: a convergence of advanced materials, cells, and microscale technologies". In: Advanced healthcare materials 7.2 (2018), p. 1700506.
- [15] Nupura S Bhise, João Ribas, Vijayan Manoharan, Yu Shrike Zhang, Alessandro Polini, Solange Massa, Mehmet R Dokmeci, and Ali Khademhosseini. "Organ-on-a-chip platforms for studying drug delivery systems". In: *Journal of Controlled Release* 190 (2014), pp. 82–93.
- [16] Amy Cochrane, Hugo J Albers, Robert Passier, Christine L Mummery, Albert van den Berg, Valeria V Orlova, and Andries D van der Meer. "Advanced in vitro models of vascular biology: human induced pluripotent stem cells and organ-on-chip technology". In: Advanced drug delivery reviews 140 (2019), pp. 68–77.
- [17] Kirsten Fetah, Peyton Tebon, Marcus J Goudie, James Eichenbaum, Li Ren, Natan Barros, Rohollah Nasiri, Samad Ahadian, Nureddin Ashammakhi, Mehmet R Dokmeci, et al. "The emergence of 3D bioprinting in organ-on-chip systems". In: *Progress in Biomedical Engineering* 1.1 (2019), p. 012001.
- [18] Janna Nawroth, Julia Rogal, Martin Weiss, Sara Y Brucker, and Peter Loskill. "Organ-on-a-chip systems for women's health applications". In: *Advanced healthcare materials* 7.2 (2018), p. 1700550.
- [19] Aleksander Skardal, Thomas Shupe, and Anthony Atala. "Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling". In: *Drug discovery today* 21.9 (2016), pp. 1399–1411.
- [20] Amir Bein, Woojung Shin, Sasan Jalili-Firoozinezhad, Min Hee Park, Alexandra Sontheimer-Phelps, Alessio Tovaglieri, Angeliki Chalkiadaki, Hyun Jung Kim, and Donald E Ingber. "Microfluidic organ-on-a-chip models of human intestine". In: *Cellular and molecular gastroenterology and hepatology* 5.4 (2018), pp. 659–668.
- [21] Kacey Ronaldson-Bouchard and Gordana Vunjak-Novakovic. "Organs-on-a-chip: a fast track for engineered human tissues in drug development". In: *Cell stem cell* 22.3 (2018), pp. 310–324.
- [22] Stephanie J Hachey and Christopher CW Hughes. "Applications of tumor chip technology". In: *Lab on a Chip* 18.19 (2018), pp. 2893–2912.

- [23] Jong Hwan Sung, Ying I Wang, Narasimhan Narasimhan Sriram, Max Jackson, Christopher Long, James J Hickman, and Michael L Shuler. "Recent advances in body-on-a-chip systems". In: *Analytical chemistry* 91.1 (2018), pp. 330–351.
- [24] Lucie A Low and Danilo A Tagle. "You-on-a-chip'for precision medicine". In: Expert Review of Precision Medicine and Drug Development 3.2 (2018), pp. 137–146.
- [25] Sebastian Rudi Adam Kratz, Gregor Höll, Patrick Schuller, Peter Ertl, and Mario Rothbauer. "Latest trends in biosensing for microphysiological organs-on-a-chip and body-on-a-chip systems". In: *Biosensors* 9.3 (2019), p. 110.
- [26] Gwendolynn Grootaers, Robert Ostendorf, Ivana Bobeldijk, Roeland Hanemaaijer, Ingeborg Kooter, Han van de Sandt, Evita van de Steeg, and Cyrille Krul. *The 3 Dimensions of Organon-a-chip*. Den Haag: TNO, 2016.