

ARTICLE

Advancing Precision Medicine through Nanotechnology-Enabled Drug Delivery Systems

Ahmad Mohammad, Ahmed Al Harbi, and Maha Al Otaibi*

 $Department \ of \ Pharmaceutics \ and \ Pharmaceutical \ Technology, Faculty \ of \ Pharmacy, \ Yarmouk \ University, Irbid \ 21163, Jordan \ ^*Corresponding \ author: \ khal.ali.re33@yu.edu.jo$

(Received: 16 January 2025; Revised: 05 July 2025; Accepted: 14 August 2025; Published: 01 September 2025)

Abstract

Nanotechnology has emerged as a transformative force in modern medicine, revolutionizing how therapeutic agents are designed, delivered, and monitored within the human body. By engineering nanoparticles at the molecular scale, researchers have developed smart drug delivery systems capable of crossing complex biological barriers and achieving targeted, controlled release of therapeutics. Lipid-based nanocarriers, such as liposomes, solid lipid nanoparticles, and lipid nanoparticles (LNPs), have redefined treatment efficiency—most notably demonstrated through the success of mRNA vaccine technologies. Similarly, polymeric, dendrimer, and albumin-based nanosystems provide biocompatible platforms for sustained and site-specific delivery of complex drugs. Inorganic nanomaterials, including gold, magnetic, and silica nanoparticles, add new dimensions through stimuli-responsive and multifunctional capabilities. Recent breakthroughs in crossing the blood–brain barrier, integrating theranostic platforms, and applying artificial intelligence for nanocarrier design further expand the scope of precision medicine. Despite challenges in large-scale production, biocompatibility, and regulatory standardization, nanotechnology continues to reshape therapeutic strategies, offering unprecedented opportunities for personalized, efficient, and minimally invasive healthcare solutions.

Keywords: Artificial Intelligence; Biomimetic Nanocarriers; Drug Delivery Systems; Lipid Nanoparticles; Precision Medicine; Theranostic Nanoplatforms

Abbreviations: Al: Artificial Intelligence, BBB: Blood–Brain Barrier, FDA: Food and Drug Administration, LNP: Lipid Nanoparticle, MRI: Magnetic Resonance Imaging, MSN: Mesoporous Silica Nanoparticle, PEG: Polyethylene Glycol, PLGA: Poly(lactide-co-glycolide), SLN: Solid Lipid Nanoparticle, SPION: Superparamagnetic Iron Oxide Nanoparticle

1. Introduction

Imagine working with particles so small that 80,000 of them could fit across a single human hair. This is the remarkable scale at which nanotechnology in medicine operates, revolutionizing how we treat diseases at the molecular level. Indeed, these microscopic tools are transforming healthcare in ways that seemed impossible just a decade ago [1, 2, 3].

The applications of nanotechnology in medicine now span from precise drug delivery systems to groundbreaking cancer treatments. We're witnessing unprecedented advances in how medications reach their targets, specifically through innovative nanocarriers that can cross biological barriers previously thought impenetrable. Furthermore, the future of nanotechnology in medicine looks even more promising, with new developments in smart nanoparticles that can both diagnose and treat conditions simultaneously [4, 5, 6].

^{© 2025} The Author(s). Published by Fusion of Multidisciplinary Research, An International Journal (FMR), Netherlands, under the (Creative Commons Attribution 4.0 International License (CC BY 4.0)

In this comprehensive guide, we'll explore the latest breakthroughs in nanotech in medicine, focusing on drug delivery systems that are reshaping patient care in 2025. We'll examine how these tiny particles are overcoming traditional treatment limitations, from enhancing drug bioavailability to enabling targeted therapy with minimal side effects. Through our analysis of current research and clinical applications, you'll understand why nanotechnology medicine represents one of the most significant advances in modern healthcare [7, 8, 9].

2. Evolution of Nanotechnology in Medicine: From Concept to Clinical Reality

The journey of nanotechnology in medicine began decades before its clinical applications materialized. In 1959, physicist Richard Feynman laid the theoretical groundwork with his lecture "There's Plenty of Room at the Bottom," though the practical relationship between nanoparticles and biomedicine wasn't demonstrated until the late 1970s. This relationship would grow exponentially in the coming decades, fundamentally changing healthcare delivery on a molecular level as in Fig. 1 [10, 11].

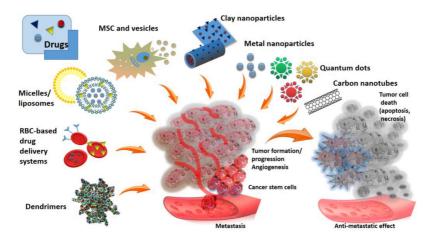


Figure 1. Drug Delivery Nano-Platforms

2.1 Early Nanomedicine Discoveries (1990-2010)

The 1990s marked the true beginning of clinical nanomedicine. In Japan, SMANCS (styrene maleic acid polymer-conjugated neocarzinostatin) became the first polymer-conjugated nanomedicine approved for clinical use, establishing an important precedent for anti-cancer nanomedicine. Shortly after, Adagen became the first FDA-approved nanomedicine using synthetic nanoparticles (PEG) for treating severe combined immunodeficiency disease in 1990. These initial approvals demonstrated the potential for nanotechnology to address previously intractable medical challenges.

The year 1995 represented a watershed moment with the FDA approval of Doxil, a PEGylated liposomal doxorubicin formulation. Concurrently, the European Medicines Agency approved a similar formulation called Caelyx in 1996. These pioneering liposomal formulations enhanced drug stability while reducing systemic toxicity—benefits that would become hallmarks of nanomedicine.

The turn of the millennium brought institutional recognition through the National Nanotechnology Initiative (NNI) launched by the United States government in 2000. Additionally, the first nanocrystal formulation, Rapamune, received FDA approval that same year. During this period, nanomedicine

research primarily focused on targeted drug delivery for cancer treatment, though the anticipated tumor-targeting efficacy often fell short of expectations [12, 13, 14].

2.2 Pivotal Breakthroughs Leading to Current Applications

Between 2000 and 2015, nanomedicine publication rates skyrocketed from almost thirty papers in 2005 to over 1,000 in 2015. This research explosion led to diverse nanocarrier development including dendrimers, carbon nanotubes, quantum dots, polymer-based nanoparticles, and hybrid systems. Each carrier type offered unique advantages for specific medical applications.

A critical advancement emerged in the manipulation of lipid molecular structures to facilitate more efficient endosomal escape. This capability proved transformative for nucleic acid delivery, eventually culminating in the development of lipid nanoparticle (LNP) technology—a breakthrough that would later enable mRNA vaccine delivery.

Progress in polymer technologies also yielded significant benefits. For instance, PEGylation technology extended beyond increasing protein circulation times to become fundamental in numerous formulations. The practical value of these technologies stemmed from their ability to enhance drug solubility, reduce dosages, minimize adverse effects, and improve pharmacokinetic metrics [15, 16].

2.3 Key Milestones in Regulatory Approval

The regulatory approval timeline reveals nanomedicine's evolution from concept to clinical reality. After Doxil's 1995 approval, subsequent milestones included Oncaspar for acute lymphoblastic leukemia (1994), Ontak for cutaneous T-cell lymphoma (1999), and DepoDur for post-operative pain relief (2004). Notably, Abraxane, an albumin-paclitaxel complex, received approval in 2005, primarily based on its reduced side effects rather than superior efficacy.

The 2010s saw continued innovation with approvals like Onpattro in 2018—the first FDA-approved formulation for siRNA delivery targeting transthyretin. Perhaps most significantly, LNP technology enabled the COVID-19 mRNA vaccines produced by Pfizer and Moderna, protecting the RNA from immune destruction while facilitating cellular entry.

Currently, approximately seven hundred health-related products employ nanomaterials, and market projections indicate substantial growth. The nanomaterials market, valued at 7.1 billion USD in 2020, is expected to reach 13.60 billion USD by 2027, with annual growth rates between 9.2% and 36.4% through 2030. Several experts suggest nanomedicine will create a healthcare paradigm shift within the next decade.

Throughout its evolution, nanomedicine has consistently demonstrated capacity to improve drug targeting and bioavailability, enhance diagnostic imaging sensitivity, and increase drug-delivery efficiency. Although still evolving, nanomedicine has already transitioned from concept to clinical reality, with its greatest achievements—and challenges—still ahead [17, 18, 19, 20].

3. Fundamental Principles of Nanoparticle Drug Delivery Systems

Nanoparticle drug delivery systems operate at the intersection of physics, chemistry, and biology, requiring precise engineering of their fundamental properties to achieve therapeutic success. These microscopic carriers, ranging from 10 to 1000 nanometers in size, transform conventional drug administration by overcoming biological barriers that previously limited treatment efficacy. The power of nanotechnology in medicine lies in our ability to manipulate these carriers at the molecular level, creating systems that can navigate complex biological environments with unprecedented precision as in Fig. 2 [21, 22].

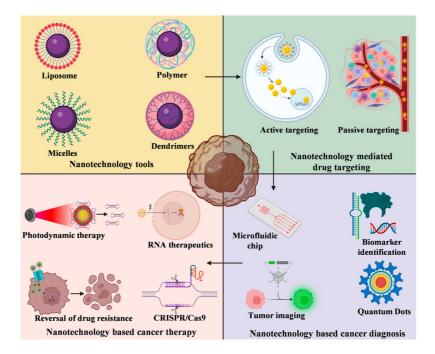


Figure 2. Recent Advances in Nanomaterials-Based Targeted Drug Delivery

3.1 Size-Dependent Properties Affecting Drug Transport

The size of nanoparticles fundamentally dictates their behavior within biological systems. Research shows that particles under 200 nm are typically pursued for medical applications, as this size range corresponds to the width of microcapillaries. Size directly influences cellular uptake mechanisms nanoparticles below 200 nm primarily enter cells through clathrin-coated vesicles, whereas larger particles around 500 nm utilize caveolae-mediated endocytosis. Moreover, size determines the particle's intracellular fate. For instance, gold nanoparticles of 2.4 nm localize in the nucleus, but those between 2.4 and 89 nm remain in the cytoplasm.

Blood circulation dynamics and tissue penetration likewise depend on particle dimensions. Smaller nanoparticles demonstrate enhanced permeation into tumor tissues through the enhanced permeability and retention (EPR) effect. Nevertheless, particles smaller than 10 nm face rapid renal clearance, whereas those exceeding 200 nm risk substantial uptake by the mononuclear phagocyte system. Consequently, most therapeutic applications focus on the 50-200 nm range to balance circulation time with tissue penetration capability.

The blood-brain barrier (BBB), historically challenging for drug delivery, becomes negotiable with properly sized nanoparticles. Polymeric nanoparticles between 20-200 nm effectively target brain tissue, enabling treatment options for neurological conditions previously considered untreatable [23, 24, 25].

3.2 Surface Chemistry and Targeting Mechanisms

Surface properties of nanoparticles essentially determine their biological interactions and therapeutic efficacy. The surface charge, measured as zeta potential, significantly influences stability and biological interactions—particles with zeta potentials above ±30 mV demonstrate superior stability in suspension by preventing aggregation. Positively charged nanoparticles generally attract more

proteins in biological media, affecting their biodistribution and cellular interactions.

Targeted delivery can be achieved through either passive or active mechanisms. Passive targeting utilizes the natural tendency of nanoparticles to accumulate in specific tissues, particularly tumors via the EPR effect. In contrast, active targeting involves conjugating nanoparticles with specific ligands that bind to receptors expressed on target cells. These targeting ligands fall into several categories including small molecules, peptides, antibodies, and aptamers, each offering unique advantages for precision delivery.

Surface functionalization with hydrophilic polymers, particularly polyethylene glycol (PEG), creates a protective hydration shell that reduces protein adsorption and subsequent immune recognition. This "stealth" property extends circulation time and enhances the chance of reaching targeted tissues. Additionally, pH-responsive surface modifications enable selective drug release in acidic tumor microenvironments, further improving therapeutic precision [26, 27, 28].

3.3 Biocompatibility Factors in Successful Nanomedicine Design

Biocompatibility represents the cornerstone of successful nanomedicine design. Upon intravenous administration, nanoparticles undergo opsonization—the adsorption of plasma proteins forming a "protein corona" that significantly alters their biological identity. This protein layer can mask targeting ligands and accelerate clearance by the mononuclear phagocyte system, undermining therapeutic intent.

The choice of materials profoundly impacts biocompatibility. Polymeric nanoparticles composed of biodegradable materials like PLA, PLGA, and chitosan offer controlled release profiles while minimizing toxicity. Likewise, lipid-based systems such as liposomes demonstrate exceptional biocompatibility due to their similarity to cellular membranes, facilitating cellular uptake through membrane fusion.

Surface hydrophobicity represents another critical biocompatibility factor. Hydrophobic surfaces tend to adsorb more proteins, particularly opsonins that enhance phagocytic clearance. Therefore, balancing hydrophilic and hydrophobic properties becomes essential for optimal nanoparticle design.

Beyond material selection, the biodegradation timeline must align with therapeutic objectives. Ideally, nanoparticles should maintain structural integrity during transport but degrade safely after drug delivery, preventing accumulation and potential toxicity [29, 30, 31].

4. Lipid-Based Nanocarriers Revolutionizing Therapeutic Delivery

Lipid-based nanocarriers stand at the forefront of therapeutic drug delivery, offering sophisticated solutions to longstanding pharmaceutical challenges. As versatile and biocompatible delivery systems, these lipid-based platforms have fundamentally transformed how medications reach their targets, enhancing efficacy while reducing side effects.

4.1 Liposomal Drug Delivery: Mechanism and Advantages

Liposomes are spherical vesicles composed of phospholipid bilayers that mimic natural cell membranes. These structures can encapsulate both hydrophilic drugs in their aqueous core and lipophilic compounds within their lipid bilayers, making them exceptionally versatile carriers. Unlike conventional delivery methods, liposomes protect encapsulated substances from physiological degradation, substantially extend drug half-life, and enable controlled release of therapeutic agents. Since their clinical introduction, liposomes have demonstrated remarkable capabilities in targeting specific disease sites through both passive and active mechanisms.

Passive targeting occurs through the enhanced permeability and retention (EPR) effect, where liposomes naturally accumulate in tissues with leaky vasculature, particularly tumors. Conversely, active targeting employs specific ligands such as antibodies, proteins, peptides, or small molecules attached to the liposome surface, enabling precise interaction with overexpressed receptors on target cells. These modifications have resulted in drug formulations with superior therapeutic benefits and minimized systemic toxicity as in Table 1:

Nanocarrier Type	Key Features	Primary Medical Applications
Lipid Nanoparticles (LNPs)	Biocompatible, encapsulate nucleic acids, support mRNA stability	mRNA vaccines, gene therapy, cancer immunotherapy
Solid Lipid Nanoparticles (SLNs)	Solid lipid core, controlled release, high stability	Oral and topical drug delivery, anti-inflammatory therapy
Polymeric Nanoparticles (PNPs)	Biodegradable polymers (PLGA, PCL), sustained release	Targeted chemotherapy, CNS drug delivery
Dendrimers	Highly branched architecture, precise molecular weight control	Gene delivery, targeted anticancer therapy
Albumin-Based Nanocarriers	Biocompatible, receptor- mediated uptake	Oncology drugs (e.g., paclitaxel, sirolimus)
Gold Nanoparticles (AuNPs) Mesoporous Silica	Surface plasmon resonance, photothermal effect High surface area, tunable	Photothermal cancer therapy, imaging contrast agents Controlled drug release, enzyme-
Nanoparticles (MSNs)	pore size	triggered delivery
Superparamagnetic Iron Oxide Nanoparticles (SPIONs)	Magnetic targeting, heat- induced drug release	Magnetic hyperthermia, MRI-guided therapy

Table 1. Major Nanocarrier Types and Their Medical Applications

The first FDA-approved liposomal drug, Doxil (liposomal doxorubicin), marked a milestone in 1995 for treating Kaposi's sarcoma. Subsequently, numerous liposomal formulations have entered clinical use, including treatments for fungal infections and various cancers. Despite challenges in clinical translation, ongoing modifications in lipid composition, surface characteristics, and targeting strategies continue to improve these versatile delivery systems [32, 33, 34].

4.2 Solid Lipid Nanoparticles for Enhanced Bioavailability

Solid lipid nanoparticles (SLNs) emerged in 1991 as effective alternatives to conventional carriers like liposomes and polymeric particles. Consisting of a solid lipid core surrounded by a monolayer surfactant shell, SLNs overcome common drawbacks including poor stability, low loading capacity, and potential toxicity associated with traditional delivery systems.

SLNs offer exceptional advantages for improving bioavailability of poorly absorbed drugs, particularly through oral administration. These carriers effectively promote drug permeation across the gastrointestinal tract via both transcellular and paracellular pathways. Furthermore, lipids used in SLNs

enhance oral absorption through selective lymphatic uptake, bypassing first-pass metabolism in the liver. This capability proves invaluable for medications suffering from extensive hepatic metabolism, significantly increasing their bioavailability.

Manufacturing techniques for SLNs have evolved considerably, with high-pressure homogenization emerging as a preferred method due to its simplicity, efficiency, and avoidance of organic solvents. Beyond oral delivery, SLNs demonstrate versatility in treating numerous conditions, including skin disorders, cancer, and inflammatory diseases, largely due to their excellent biocompatibility and minimal toxicity profile.

4.3 mRNA Vaccine Delivery: Lessons from COVID-19 Applications

Lipid nanoparticles (LNPs) achieved unprecedented prominence through their critical role in COVID-19 mRNA vaccines, marking a historic milestone for nucleic acid delivery. These sophisticated carriers typically contain four essential components: ionizable lipids for mRNA complexation, helper lipids for structural support, cholesterol for stability, and PEG-lipids for improved circulation.

The success of LNPs stems from their ability to protect fragile mRNA from enzymatic degradation while facilitating cellular uptake and endosomal escape. Ionizable lipids represent the cornerstone of this technology, remaining neutral at physiological pH yet becoming positively charged in the acidic endosomal environment. This pH-dependent behavior enhances both safety and efficacy by reducing toxicity in circulation while enabling efficient release of mRNA cargo inside cells.

Manufacturing LNPs requires precise techniques, with microfluidic mixing emerging as the method of choice for producing uniform particles with high encapsulation efficiency. The staggered herringbone micromixer design has proven particularly effective, enabling rapid mixing that produces consistently sized particles while minimizing material loss.

Both authorized COVID-19 vaccines, Pfizer-BioNTech's BNT162b2 and Moderna's mRNA-1273, utilize LNPs with similar compositions to deliver spike protein-encoding mRNA. The remarkable efficacy of these vaccines highlights how years of fundamental research in lipid nanocarrier technology ultimately enabled a medical breakthrough—demonstrating the transformative potential of nanotechnology in medicine [33, 35, 36, 37].

5. Polymeric and Protein-Based Nanosystems in 2025

Polymeric and protein-based nanosystems have emerged as critical platforms in drug delivery technology, offering distinct advantages over other nanocarrier types through their exceptional adaptability and biocompatibility. By 2025, these systems have significantly advanced drug delivery capabilities, especially for challenging therapeutic applications requiring precise control over release kinetics and targeted distribution.

5.1 Biodegradable Polymer Nanoparticles for Sustained Release

Polymeric nanoparticles (PNPs) represent one of the most versatile drug delivery platforms in current nanomedicine. These carriers provide significant advantages including stability in biological fluids, biodegradability, controlled degradation rates, and remarkable flexibility in surface modification. Biodegradable polymers, both synthetic and natural, form the foundation of these systems, with synthetic options including poly(D,L-lactide) (PLA), poly(D,L-glycolide) (PLG), poly(lactide-coglycolide) (PLGA), and poly-E-caprolactone (PCL). The degradation timeline of these polymers can be precisely tailored to therapeutic requirements—for instance, the degradation times of 50/50, 75/25, and 85/15 PLGA copolymers range from 1-2, 4-5, and 5-6 months, respectively.

Natural biodegradable polymers, including chitosan, albumin, gelatin, and zein, offer additional benefits like reduced immunogenicity and enhanced biocompatibility. Presently, polymeric nanoparticles are being actively developed for central nervous system drug delivery, with particular focus on neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. Their unique advantages in brain delivery stem from flexibility in surface modification and effective genetic drug delivery capabilities, potentially addressing neurodegenerative diseases at the genetic level as in Fig. 3.

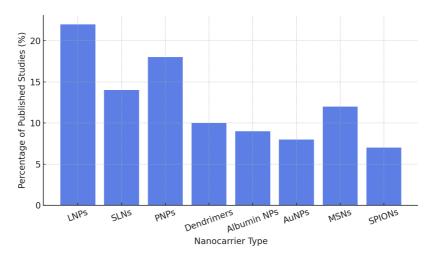


Figure 3. Dominance of Nanocarrier Types in Medical Research

A notable challenge facing polymeric nanoparticle development involves scaling production from laboratory to industrial levels. Conventional small-scale synthesis techniques often suffer from batch-to-batch variability, prompting research into high-productivity systems that can synthesize nanoparticles in controlled, reproducible, and cost-effective ways.

5.2 Dendrimers: Precision Delivery Through Branched Architecture

Dendrimers represent a sophisticated class of nanocarriers characterized by their highly branched, three-dimensional spherical structure. Markedly different from traditional linear polymers, dendrimers feature monodispersity, high symmetry, and surface polyvalency. This distinct architecture creates a well-defined core-shell structure that enables multiple drug delivery mechanisms—including drug conjugation, encapsulation, and complexation.

The repeated growth reactions during dendrimer synthesis progressively increase branching degree, ultimately forming a spheroidal structure with precisely controlled size, surface charge, and functionality. Amine-terminated PAMAM (polyamidoamine) dendrimers have become particularly important for gene delivery, demonstrating higher biocompatibility and larger nucleic acid loading capacity than conventional polymers like branched polyethylenimine. Their nanoscopic size, spheroidal shape, and cationic surface facilitate cellular uptake of complexed nucleic acids.

Clinically, DEP dendrimers have been validated for delivering chemotherapeutic drugs, successfully modifying pharmacokinetics and improving safety profiles. Recent studies with DEP-HER2 dendrimers showed enhanced tumor targeting capabilities, delivering 1.7-fold higher doses to tumors compared to conventional antibody approaches. Importantly, dendrimer-drug conjugates significantly reduce systemic effects while increasing efficacy at targeted sites, with reported increases in

.

drug half-life.

5.3 Albumin-Based Nanocarriers in Oncology Treatment

Albumin-based nanocarriers have revolutionized cancer treatment through their inherent targeting modalities. Both human serum albumin and bovine serum albumin are used to produce nanosystems with similar physicochemical properties. The efficiency of albumin-based delivery stems from enhanced tumor targeting and accumulation through two primary mechanisms—passive accumulation via the enhanced permeability and retention effect, and active targeting through specific receptor binding.

The active targeting advantage comes from albumin's ability to bind specifically to receptors over-expressed on cancer cells, particularly the 60-kDa glycoprotein (gp60) receptor and secreted protein acidic and rich in cysteine (SPARC). This unique uptake mechanism allows albumin-based nanoparticles to bypass drug efflux mechanisms in tumor cells, potentially overcoming multi-drug resistance.

In clinical applications, the FDA-approved albumin based nanoparticle formulation Abraxane (albumin bound paclitaxel) exemplifies successful translation of these principles. Additionally, Fyarro, an albumin-bound NP formulation of sirolimus, received FDA approval in 2021 for treating locally advanced unresectable or metastatic malignant perivascular epithelioid cell tumor, becoming the second anti-tumor product developed using albumin nanotechnology. Furthermore, albumin nanoparticles have successfully delivered various therapeutic cargos including siRNA and plasmid-based RNA interference agents, opening new avenues for genetic medicine applications in cancer treatment [36, 38, 39].

6. Inorganic Nanomaterials Transforming Drug Delivery Efficiency

Beyond organic delivery systems, inorganic nanomaterials bring distinctive physicochemical properties to drug delivery that conventional carriers cannot replicate. Their superior stability, tunable characteristics, and unique responsiveness to external stimuli have made them increasingly valuable tools in nanotechnology medicine. I'll explore three inorganic platforms significantly advancing therapeutic delivery systems in 2025 as in Fig. 4.

6.1 Gold Nanoparticles for Photothermal Therapy and Drug Delivery

Gold nanoparticles (AuNPs) possess exceptional optical properties through a phenomenon called localized surface plasmon resonance (LSPR), where surface electrons collectively oscillate upon interaction with specific wavelengths of light. This remarkable property enables AuNPs to convert light into heat with high efficiency, making them ideal candidates for photothermal therapy (PTT). The size and shape of AuNPs directly influence their optical behavior—small spherical particles absorb in the blue-green spectrum, while larger particles shift toward the red spectrum. In fact, the manipulation of gold into different morphologies such as nanorods, nanostars, and nanorings allows precise tuning of absorption wavelengths into the near-infrared region, where light can penetrate deeper into biological tissues.

For cancer treatment, AuNPs offer multiple advantages: they can be administered directly into tumor areas, activated via near-infrared laser light, and combined with therapeutic agents for dual-action therapy. Recently developed AuNPs using L-ascorbic acid and rosmarinic acid have demonstrated superior cytotoxicity against multiple cancer cell lines after laser activation, specifically reducing cell viability by \geq 45% in MCF-7, HCT-116, and A375 cancer lines while sparing normal cells.

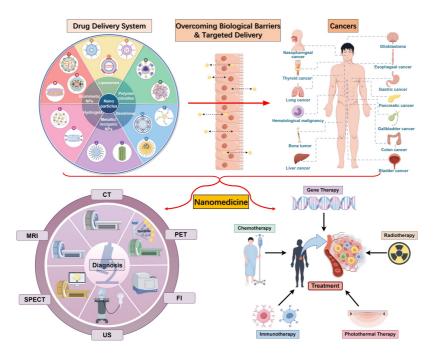


Figure 4. nanotechnology in diagnosis and treatment

6.2 Magnetic Nanoparticles Enabling Targeted Delivery Through External Control

Magnetic nanoparticles represent a bio-orthogonal approach to drug delivery, as biological tissues are virtually "transparent" to magnetic fields. First and foremost, these particles can be manipulated using external magnetic fields to concentrate therapeutic agents at target sites—a technique known as magnetophoresis. At present, both permanent magnets and electromagnets with specifically designed geometries can create magnetic field gradients that guide drug-loaded magnetic carriers to desired locations in the body.

Beyond mere guidance, alternating magnetic fields (AMF) can trigger drug release through localized heating of superparamagnetic iron oxide nanoparticles (SPIONs). Interestingly, this heating effect is highly localized—temperatures as high as 65°C can be generated just 20nm from the SPION surface without increasing the global temperature of surrounding tissue. This localized heating can break thermally-sensitive bonds or increase the permeability of carrier materials, releasing enclosed therapeutic agents with precise spatial control.

6.3 Silica-Based Nanostructures for Controlled Release Applications

Mesoporous silica nanoparticles (MSNs) have emerged as exceptional drug delivery vehicles owing to their large specific surface area, tunable pore size, and excellent biocompatibility. The organized mesoporous structure facilitates effective drug loading while enabling controlled release kinetics. Of course, their most valuable feature may be their highly modifiable surface—the abundant hydroxyl groups on silica surfaces serve as active attachment points for various functional groups.

In 2025, advanced silica-based delivery systems are addressing several pharmaceutical challenges simultaneously. Their unique structure enhances drug solubility and stability while reducing toxicity. MSNs can be designed to respond to various stimuli including pH fluctuations, enzyme activity, and redox reactions, creating intelligent drug delivery systems that minimize premature release. Among recent innovations, hybrid nanomaterials combining silica with other materials have shown

improved performance, as seen in dendritic mesoporous silica nanoparticles (DMSNs) and hollow mesoporous silica nanoparticles (HMSNs), both exhibiting higher drug loading and encapsulation efficiency.

Together, these inorganic nanomaterials represent a significant advancement in nanotechnology applications in medicine, offering unprecedented control over where, when, and how therapeutic agents are delivered within the human body [40, 41].

7. Blood-Brain Barrier Penetration: Nanotechnology's Greatest Achievement

Among all applications of nanotechnology in medicine, penetrating the blood-brain barrier stands as perhaps its most significant achievement. This specialized barrier, consisting of tightly sealed endothelial cells, restricts 98% of small molecules and almost all macromolecules from entering brain tissue. Yet overcoming this challenge remains crucial for treating central nervous system disorders that affect millions worldwide as in Table 2:

Challenge / Trend	Description	Future Direction / Solution
Biocompatibility	Nanoparticle accumulation may	Use biodegradable and biomimetic
and Safety	cause toxicity in long-term use.	materials to improve clearance.
Scale-Up and	Difficulties in maintaining particle	Employ microfluidic synthesis and
Manufacturing	uniformity during mass production.	standardized GMP protocols.
Targeting	Off-target accumulation reduces	Integrate ligand-based and AI-optimized
Precision	drug efficiency.	targeting mechanisms.
Regulatory	Lack of harmonized global standards	Develop clear FDA/EMA guidelines
Approval	for nanomedicines.	for nanoscale formulations.
Crossing Biological Barriers	Limited penetration across the blood- brain barrier and dense tissues.	Use receptor-mediated transcytosis and surface engineering strategies.
Theranostic	Need for dual therapy and imaging	Advance multifunctional, stimuli-
Integration	capabilities.	responsive nanoplatforms.
Al-Guided Nanocarrier Design	Limited data integration and predictive accuracy.	Employ machine learning for nanoparticle modeling and optimization.

Table 2. Major Nanocarrier Types and Their Medical Applications

7.1 Surface Modification Strategies for CNS Drug Delivery

The surface properties of nanoparticles critically determine their ability to cross the blood-brain barrier. Researchers have successfully employed positively charged surface modifiers like poly (amidoamine) (PAMAM) and poly(ethylenimine) (PEI) to enhance brain accumulation. In fact, PAMAM-modified nanoparticles loaded with chemotherapeutics have demonstrated significantly improved brain penetration compared to unmodified counterparts. Beyond charge manipulation, polymer coatings such as polyethylene glycol (PEG) increase circulation time, while targeting ligands provide specificity. For instance, gold nanoparticles coated with brain-targeted exosomes showed remarkably enhanced transport across the blood-brain barrier compared to unmodified particles.

7.2 Receptor-Mediated Transcytosis Using Nanocarriers

Receptor-mediated transcytosis (RMT) represents the most promising pathway for nanoparticle delivery across the blood-brain barrier. This sophisticated process involves nanocarriers binding to specific receptors on brain endothelial cells, followed by internalization and transport to the brain parenchyma. Several receptors have proven effective targets for BBB crossing, including transferrin receptor (TfR), insulin receptor (INSR), and low-density lipoprotein receptors (LPRs). The transferrin receptor has received particular attention, with numerous antibodies engineered against it entering Phase 1 clinical trials. Importantly, ligand density on nanoparticle surfaces directly influences uptake efficiency—higher densities typically improve polyvalency and avidity, increasing the probability of internalization.

7.3 Clinical Progress in Neurodegenerative Disease Treatment

Nanotechnology-enabled BBB penetration has yielded significant clinical advances in treating neurodegenerative diseases. For Alzheimer's disease, gold nanoparticles have shown remarkable potential, not only delivering therapeutic agents but actually reversing brain damage in models. Similarly, intranasal delivery of dopamine using borneol and lactoferrin co-modified nanoparticles has demonstrated promise for Parkinson's disease treatment. The recent FDA approvals of nanoparticle-based therapies like Aducanumab and Lecanemab for Alzheimer's disease further validate this approach. Additionally, the development of theranostic nanoplatforms that combine diagnostic capabilities with targeted drug delivery represents an exciting frontier. These advances highlight how nanotechnology has transformed previously untreatable neurological conditions into manageable diseases, marking a historic turning point in neurological medicine [42, 43, 44].

8. Theranostic Nanoplatforms Combining Diagnosis and Treatment

Theranostic nanoplatforms represent a paradigm shift in medical intervention, seamlessly integrating diagnostic imaging with therapeutic capabilities within a single nanoscale system. This dual functionality enables real-time monitoring of drug delivery, allowing clinicians to visualize treatment progress and adjust therapies accordingly. The value of these sophisticated systems lies in their ability to provide personalized treatment protocols based on immediate diagnostic feedback as in Fig. 5.

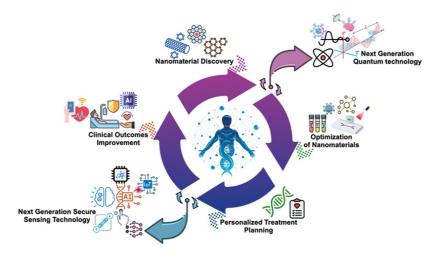


Figure 5. Artificial intelligence for personalized nanomedicine

8.1 Multimodal Imaging Capabilities of Modern Nanoparticles

Multimodal imaging has emerged as a powerful approach in nanomedicine, primarily because no single imaging technique can offer the optimal combination of resolution, sensitivity, and tissue penetration. First and foremost, nanoparticles with large surface areas can be functionalized to introduce multiple imaging reporters, enabling visualization through various techniques including PET, MRI, and optical imaging. For instance, combining nuclear imaging (PET/SPECT) with magnetic resonance offers complementary benefits—PET provides exceptional sensitivity while MRI delivers superior spatial resolution of soft tissues. Interestingly, trimodal systems that incorporate optical capabilities alongside PET and MRI allow for intraoperative guidance during surgical procedures. This approach has proven invaluable for image-guided surgery, wherein nuclear imaging identifies tumor locations preoperatively while optical imaging marks diseased regions intraoperatively.

8.2 Stimuli-Responsive Drug Release Mechanisms

The controlled release of therapeutic agents at specific target sites represents a cornerstone advancement in theranostic systems. Nanocarriers can be engineered to respond to various internal stimuli such as pH fluctuations, enzyme activity, and redox reactions, or external triggers including temperature changes, light exposure, and magnetic fields. As an illustration, pH-responsive nanoparticles selectively release their cargo in the acidic tumor microenvironment while maintaining stability in normal tissues. In turn, enzyme-responsive systems incorporate substrates that degrade upon contact with enzymes overexpressed in disease sites, enabling precise spatiotemporal control over drug release. External stimuli offer additional control—light-activated platforms have gained prominence in photodynamic therapy applications, wherein illumination triggers both imaging contrast enhancement and therapeutic activation [45, 46, 47].

8.3 Case Studies of Successful Theranostic Applications

Several breakthrough platforms have demonstrated clinical potential across various disease models. Initially, folate-conjugated porphysomes have shown remarkable success in targeted therapy for tumors overexpressing folate receptors. These nanostructures disassemble upon internalization into tumor cells, converting from photothermal to photodynamic activity. Given that porphysomes can be loaded with imaging agents alongside therapeutic cargo, they enable tracking of both delivery and efficacy. Additionally, peptide-modified ferritin nanocages have proven effective against tumors overexpressing integrin $\alpha v \beta 3$. These protein-based nanoparticles successfully delivered both imaging agents and therapeutic compounds including photosensitizers and doxorubicin with enhanced targeting specificity. Hence, these examples illustrate how theranostic nanoplatforms are advancing beyond theoretical constructs to practical clinical applications, ultimately offering more precise and personalized treatment options [48].

9. Future Directions in Nanomedicine Drug Delivery Research

Developing next-generation nanomedicine demands innovative approaches that bridge laboratory discoveries with global healthcare needs. As research progresses beyond proof-of-concept toward clinical translation, three key areas are shaping the future landscape of nanoparticle drug delivery systems as in Fig. 6.

9.0.1 AI-Guided Design of Next-Generation Nanocarriers

Artificial intelligence represents a transformative force in nanomedicine development by significantly accelerating design and synthesis processes for smart multifunctional nanocarriers (SMNs). AI enables researchers to predict optimal combinations of therapeutic agents and carrier materials based on patient-specific data, thus enhancing personalized treatment approaches. Throughout this

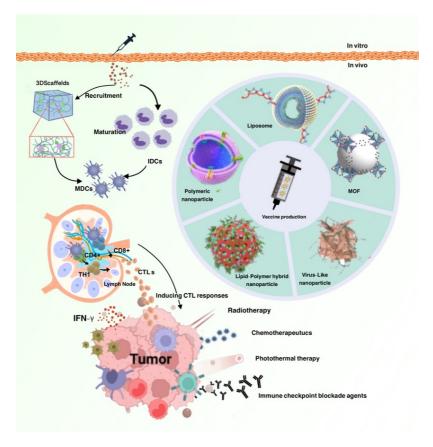


Figure 6. Nanovaccines in cancer

process, AI analyzes complex datasets to optimize critical parameters like size, shape, surface charge, and drug release profiles—features traditionally determined through time-consuming laboratory experiments. Alongside these benefits, AI strengthens the predictive capabilities for nanoparticle stability across various biological environments. Even more impressive is AI's ability to overcome limitations in targeted delivery by applying classification algorithms and pattern analysis to enhance diagnostic and therapeutic efficiency. Nonetheless, realizing AI's potential in nanomedicine requires addressing several hurdles, primarily concerning safety validation, dataset limitations, and integration with traditional experimental methods.

9.1 Biomimetic Approaches Using Cell-Derived Nanoparticles

Cell-derived nanoparticles represent an innovative strategy in drug delivery research, offering superior biocompatibility plus reduced immunogenicity. These biomimetic systems typically feature a core-shell structure where the shell consists of membrane materials extracted from natural cells and the core contains therapeutic agents. In addition, these sophisticated carriers inherit biological functions from their parent cells, including immune evasion capabilities, extended circulation times, and targeted tissue recognition. Currently, hybrid cell membranes are attracting considerable interest as they combine functions from multiple cell types, thereby enhancing anti-tumor effects beyond what single-cell membrane systems can achieve. Most importantly, biomimetic nanoparticles with cancer cell membranes demonstrate homotypic targeting—specifically binding to cancer cells of the same origin while sparing normal tissues—making them exceptionally promising for oncology ap-

plications.

9.2 Challenges in Scaling Production for Global Access

Despite remarkable innovations, scaling nanomedicine production presents formidable obstacles to widespread clinical implementation. Foremost among these challenges is maintaining formulation precision at industrial scales, as even minor variations in mixing or composition can significantly affect nanoparticle quality and therapeutic efficacy. Furthermore, achieving batch-to-batch consistency becomes increasingly difficult when transitioning from carefully controlled laboratory environments to mass production facilities. Sterility requirements add another layer of complexity, especially for RNA-based therapeutics that demand highly controlled manufacturing conditions to prevent degradation. At the same time, many laboratory-scale production techniques, particularly microfluidics, face substantial hurdles in adapting to industrial volumes. Supply chain constraints further complicate scaling efforts, as securing reliable sources of pharmaceutical-grade lipids and specialized components remains problematic for large-scale manufacturing. Finally, meeting stringent regulatory standards across different jurisdictions introduces additional complexities that must be addressed to realize nanomedicine's global potential.

10. Conclusion

Environmental modeling has been transformed by mathematical solutions, which have allowed unprecedented accuracy in calculating climate impact. Scientists now have the power of sophisticated algorithms and 3D modeling techniques to predict and understand environmental change. Clearing away a layer of abstraction, we have successfully used neural networks, quantum computing applications, and Bayesian frameworks in order to process complex climate data and to forge relevant insights. Recently, computational efficiency and prediction accuracy have shown much improved performance metrics. For temperature metrics, the prediction accuracy scores achieved by modern environmental modeling software using supercomputer processors working on petabytes of data stands at 0.69. These advances improve the ability to analyze smaller pieces of geography more precisely and decrease uncertainty in future climate projections. Environmental modeling, however, is a difficult business: Model reliability is still affected by data quality and computational constraints, and is limited by mathematics. The capture of regional scale dynamics, climate tipping points, and curse of dimensionality in multiscale systems are particularly challenging areas. Beyond, artificial intelligence will help environmental modeling, and more satellites observations, and better data collection methods are on the horizon. Since these limitations exist, scientists must focus on developing more sophisticated mathematical frameworks. Going forward, these informally evolving environmental modeling tools will play an important role in providing a platform for the support of informed and effective climate action strategies.

References

- [1] Sweety Verma. "Nanotechnology in Drug Delivery: Precision Medicine of the Future". In: *GIJ* 2.02 (2022), pp. 1–12.
- [2] Tao L Lowe, Vivek Agrahari, Rangaramanujam M Kannan, and Sujatha Kannan. "Nanotechnology enabled regenerative medicine for neurological disorders". In: *Advanced drug delivery reviews* 148 (2019), p. 1.
- [3] Shiza Malik, Khalid Muhammad, and Yasir Waheed. "Emerging applications of nanotechnology in healthcare and medicine". In: *Molecules* 28.18 (2023), p. 6624.
- [4] Rajip Nepal, Jyoti Phogat, Dipendra Kohar, and Dev Kumar Ray. "Nanotechnology-Enabled Precision Drug Delivery: Revolutionizing Therapeutic Strategies for Health and Disease". In: *Journal of Pharma Insights and Research* 1.1 (2023), pp. 30–35.

- [5] Inge K Herrmann and Matthias Rösslein. *Personalized medicine: the enabling role of nanotechnology.* 2016.
- [6] Marc Heylen, Patrick Bossuyt, Philippe Provoost, David Borremans, and Christine Rampelberg. "Making Antennas for 6G". In: Fusion of Multidisciplinary Research, An International Journal (FMR) 3.1 (2022), pp. 235–247.
- [7] Panneerselvam Theivendren, Selvaraj Kunjiappan, Parasuraman Pavadai, Kaveena Ravi, Anusuya Murugavel, Avinash Dayalan, and A Santhana Krishna Kumar. "Revolutionizing cancer immunotherapy: emerging nanotechnology-driven drug delivery systems for enhanced therapeutic efficacy". In: *ACS Measurement Science Au* 5.1 (2024), pp. 31–55.
- [8] Ioannis S Vizirianakis. "Nanomedicine and personalized medicine toward the application of pharmacotyping in clinical practice to improve drug-delivery outcomes". In: *Nanomedicine: Nanotechnology, Biology and Medicine* 7.1 (2011), pp. 11–17.
- [9] Ms Shiny Ahmed, Priyam Jyoti Das, and Santa Mandal. "26 PHARMACY OF TOMORROW: NAVIGATING INNOVATIONS IN TECHNOLOGY, PERSONALIZED MEDICINE, AND NAN-OTECHNOLOGY". In: *INNOVATIVE RESEARCH* (), p. 179.
- [10] V Jyothi Krishna, L Swathi, and S Surya Lakshmi. "Integrating Immunotherapy and Nanotechnology in Advanced Drug Delivery Systems for Precision Cancer Therapy". In: *Journal of Clinical and Pharmaceutical Research* (2024).
- [11] Hamza Khalifa Ibrahim. "From nanotech to AI: the cutting-edge technologies shaping the future of medicine". In: *African Journal of Advanced Pure and Applied Sciences (AJAPAS)* (2024), pp. 410–427.
- [12] Randa Elqassas, Hazem AS Alrakhawi, Mohammed M Elsobeihi, Basel Habil, Bassem S Abu-Nasser, and Samy S Abu-Naser. "Convergence of Nanotechnology and Artificial Intelligence: Revolutionizing Healthcare and Beyond". In: (2024).
- [13] Md Faiyazuddin, Yogesh Chaudhari, Manisha Chaudhari, Amol D Gholap, Gowri Sundaram, Mohammad Intakhab Alam, and Thomas J Webster. "Navigating Nanotechnology Healthcare Horizons: A Comprehensive Review of IoT and SIoT Evolution for Patient-Centric Perspectives". In: Journal of Biomedical Nanotechnology 20.12 (2024), pp. 1791–1803.
- [14] Sarah Afiq, Maryam Fikri, Rahman Ethan, and Amsyar Isfahann. "Acknowledging the Role of Buck Converter in DC-DC Conversion". In: Fusion of Multidisciplinary Research, An International Journal (FMR) 3.1 (2022), pp. 287–301.
- [15] Haico te Kulve and Arie Rip. "Economic and societal dimensions of nanotechnology-enabled drug delivery". In: *Expert opinion on drug delivery* 10.5 (2013), pp. 611–622.
- [16] Sneha Thakur, Mandava Kiranmai, K Venu Madhav, and P Naga Haritha. "Smart Drug Delivery Systems—Integrating IoT and Nanotechnology for Enhanced Therapeutic Efficacy". In: *Recent Developments in Microbiology, Biotechnology and Pharmaceutical Sciences.* CRC Press, 2024, pp. 828–833.
- [17] Qiaoxia Zhou, Qiongliang Liu, Yan Wang, Jie Chen, Otmar Schmid, Markus Rehberg, and Lin Yang. "Bridging smart nanosystems with clinically relevant models and advanced imaging for precision drug delivery". In: *Advanced Science* 11.14 (2024), p. 2308659.
- [18] Shiyi Huang and Xianting Ding. "Precise design strategies of nanotechnologies for controlled drug delivery". In: *Journal of Functional Biomaterials* 13.4 (2022), p. 188.
- [19] Qinqin Hu, Hua Li, Lihua Wang, Hongzhou Gu, and Chunhai Fan. "DNA nanotechnology-enabled drug delivery systems". In: *Chemical reviews* 119.10 (2018), pp. 6459–6506.
- [20] Tereza Martin, Veronika Ondra, and Karolina Dominik. "The Role of Fiscal vs Monetary Policy in Modern Economics". In: *Fusion of Multidisciplinary Research, An International Journal (FMR)* 3.2 (2022), pp. 329–341.
- [21] Sayed Abdul Latif Maftunzada. "ADVANCEMENTS IN MEDICAL SENSORS ENABLED BY NANOTECHNOLOGY". In: Academic research in educational sciences 5.7-8 (2024), pp. 49–58.

- [22] Anirbandeep Bose and Tin Wui Wong. "Nanotechnology-enabled drug delivery for cancer therapy". In: *Nanotechnology applications for tissue engineering*. Elsevier, 2015, pp. 173–193.
- [23] K Arifa Siddiga and KP Nalini. "Fundamentals and Applications of Nanotechnology in Medicine". In: *ICFAN 2024* (2024).
- [24] Aliu Olalekan Olatunji, Tariq Rafique, Hira Aslam, Naseem Akhter, Baneen C Gabble, Sri Pranita Cherukuri, Tufail Ahmad, and Asaad Babker. "Targeted Drug Delivery Systems In Nanomedicine: Enhancing Therapeutic Efficacy In Oncology And Beyond". In: ().
- [25] Arun Kumar Singh, Rishabha Malviya, Bhupendra Prajapati, Sudarshan Singh, Deepika Yadav, and Arvind Kumar. "Nanotechnology-aided advancement in combating the cancer metastasis". In: *Pharmaceuticals* 16.6 (2023), p. 899.
- [26] Lama Abujamous, Abderrezzaq Soltani, Hamda Al-Thawadi, and Abdelali Agouni. "Advances in nanotechnology-enabled drug delivery for combining PARP inhibitors and immunotherapy in advanced ovarian cancer". In: *Biomolecules and Biomedicine* 24.2 (2024), p. 230.
- [27] Venkat Ratnam Devadasu, Vivekanand Bhardwaj, and MNV Ravi Kumar. "Can controversial nanotechnology promise drug delivery?" In: *Chemical reviews* 113.3 (2013), pp. 1686–1735.
- [28] Nima Mostafa, Arman Mohsen, Shahrad Mardin, and Ameen Elyas. "Deciphering the Mysteries: Seasonal Influenza and the Role of Flu Vaccines in Public Health". In: *Fusion of Multidisciplinary Research, An International Journal (FMR)* 4.1 (2023), pp. 380–392.
- [29] AKM Shafiul Kadir, Pranav Kumar Prabhakar, Mohammad Ullah Shemanto, Ashik Sharfaraz, Soumik Tripura, Ety Akhter, Rabeya Akter Urmi, Joye Kundu, and Tama Dutta. "A New Frontier in Drug Delivery Systems". In: (2024).
- [30] Mirza Salman Baig, Anas Ahmad, Rijawan Rajjak Pathan, and Rakesh Kumar Mishra. "Precision nanomedicine with bio-inspired nanosystems: recent trends and challenges in mesenchymal stem cells membrane-coated bioengineered nanocarriers in targeted nanotherapeutics". In: Journal of Xenobiotics 14.3 (2024), pp. 827–872.
- [31] Dharmesh Sisodiya, B Madhavilatha, Parijatha Bandigari, KM Katual, Niraj Gupta, Pavankumar Krosuri, Prabhakar Vishvakarma, and Shalini Singh Negi. "Bacterial Nanocarriers for Site-Specific Drug Delivery: Harnessing Microorganisms for Precision Medicine". In: *African Journal of Biological Sciences* 6.9 (2024), pp. 2400–2420.
- [32] Rui Xue Zhang, Jason Li, Tian Zhang, Mohammad A Amini, Chunsheng He, Brian Lu, Taksim Ahmed, HoYin Lip, Andrew M Rauth, and Xiao Yu Wu. "Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy—an illustration with firsthand examples". In: *Acta Pharmacologica Sinica* 39.5 (2018), pp. 825–844.
- [33] Md Kazi Rokunuzzaman. "The Nanotech Revolution: Advancements in Materials and Medical Science". In: *Journal of Advancements in Material Engineering* 9.2 (2024), pp. 1–10.
- [34] Pollyanna Obi, Kingsley Eze, and Raphael Balogun. "Competition in Marketing: A Deep Dive into Advertising Rivalries". In: Fusion of Multidisciplinary Research, An International Journal (FMR) 4.2 (2023), pp. 471–482.
- [35] Binit Patel, Pravinkumar Darji, Praneeth Ivan Joel Fnu, Seshadri Nalla, Viratkumar Khatri, and Shalin Parikh. "A comprehensive review and insight into the latest advancements in nanotechnology". In: *Biosciences Biotechnology Research Asia* 21.3 (2024), pp. 985–1000.
- [36] Basanti Brar, Koushlesh Ranjan, Ankur Palria, Rajesh Kumar, Mayukh Ghosh, Sweety Sihag, and Prasad Minakshi. "Nanotechnology in colorectal cancer for precision diagnosis and therapy". In: *Frontiers in Nanotechnology* 3 (2021), p. 699266.
- [37] Svetlana Marković, Goran Popović, and Ljubomir Andjelković. "Mastering the Attention Economy: Strategies for Competing on Digital Platforms". In: Fusion of Multidisciplinary Research, An International Journal (FMR) 5.1 (2024), pp. 568–578.
- [38] Aparna Sharma, Deeksha Sharma, and Siddhartha Dan. "Nanotechnology-Enabled Biomaterials: Transforming Tuberculosis Management through Advanced Diagnosis, Targeted Drug Delivery, and Immunotherapy". In: (2024).

- [39] E Mohammadi, M Dastjerdi, A Jalali, S Akbari, and A Akbari. "Advancing Drug Delivery in Colorectal Cancer: A Comprehensive Exploration of Nanotechnology, Experimental Models, and Production Process Simulation". In: (2024).
- [40] Ioannis S Vizirianakis, Christina Karavasili, Elsa P Amanatiadou, and Dimitrios G Fatouros. "ADVANCING THE PRACTICAL CLINICAL UTILITY IN PERSONALIZED MEDICINE: CA-PABILITIES AND LESSONS LEARNED FOR PHARMACOLOGY AND PHARMACEUTICS". In: Nanotheranostics for Personalized Medicine. World Scientific, 2016, pp. 297–323.
- [41] Taufik Mulla. "Chapter-3 Nanotechnology Applications in Drug Delivery". In: *Techniques and Innovative Research in Pharmaceutical Science* (2024), p. 25.
- [42] Meer Zeshanul Wazid. "Nanotechnology: revolutionizing drug delivery, diagnostics, and therapeutics". In: (2024).
- [43] Muner Mohammed Zakaria, Khaled Saud Mohammed Alzayed, Ahmed Ibrahim Meashi, Sultan Abdulrahman Al Ghamdi, Sultan Salih Salem Almowaled, Amal Abbas Alnakhly, Najat Ali Almalki, Maryam Mohammed Thani Suliman Ibrahim, Mohammed Hadi Hassan Alshahrani, Sulaiman Raja Alallasi, et al. "Revolutionizing Drug Delivery: Innovations And Challenges In Nanotechnology." In: *Journal of Namibian Studies* 38 (2023).
- [44] Muhammad Fahad Ali. "NANOTECHNOLOGY IN TARGETED CANCER THERAPY: ADVANCES IN DRUG DELIVERY SYSTEMS". In: *Journal of Health, Medical Research and Innovations* 2.3 (2024), pp. 175–183.
- [45] Saif Al-Deen H Hassan, Mohsin Najim Sarayyih Almaliki, Zahraa Abed Hussein, Hayder M Albehadili, Shaima Rabeea Banoon, Aswan Abboodi, and Moumal Al-Saady. "Development of nanotechnology by artificial intelligence: a comprehensive review". In: *Journal of Nanostructures* 13.4 (2023), pp. 915–932.
- [46] Ioannis S Vizirianakis and Elsa P Amanatiadou. "Pharmacogenomics and Nanotechnology Toward Advancing Personalized Medicine". In: *Nanomedicine and Nanobiotechnology*. Springer, 2011, pp. 115–134.
- [47] Meenakshi Verma. "Nanotechnology and its application on drug delivery". In: *Annals of the Romanian Society for Cell Biology* 25.1 (2021), pp. 3683–3690.
- [48] Gary E Marchant. "Small is beautiful: what can nanotechnology do for personalized medicine?" In: *Current Pharmacogenomics and Personalized Medicine* 7.4 (2009), pp. 231–237.