Electrode Batteries: Organic Material's influence on Lithium-Ion Battery Performance

Authors

  • Anastasia Klymenko Vinnytsia National Technical University, Vinnytsia, Ukraine Author
  • Snizhana Shevchenko Vinnytsia National Technical University, Vinnytsia, Ukraine Author
  • Rostislav Marchenko Vinnytsia National Technical University, Vinnytsia, Ukraine Author
  • Dmitriy Tkachenko Vinnytsia National Technical University, Vinnytsia, Ukraine Author

DOI:

https://doi.org/10.63995/SGCF3012

Keywords:

Cycling Stability; Energy Density; Environmental Friendliness; Lithium-Ion Batteries; Organic Materials; Performance Enhancement

Abstract

The integration of organic materials into electrode batteries, specifically lithium-ion batteries, has shown significant potential in enhancing battery performance. Organic materials offer several advantages, including abundant availability, environmental friendliness, and tunable properties, making them attractive alternatives to traditional inorganic materials. Research has demonstrated that organic compounds can improve the energy density, cycling stability, and overall efficiency of lithium-ion batteries. These materials contribute to better electrode flexibility, higher capacity retention, and faster charge-discharge rates. Innovations in the synthesis and design of organic electrode materials have led to the development of high-performance batteries with increased lifespan and reduced environmental impact. Challenges remain, such as ensuring long-term stability and addressing issues related to material degradation. However, ongoing advancements continue to drive the optimization of organic materials for lithium-ion batteries, promising a future with more sustainable and efficient energy storage solutions. This abstract highlights the transformative potential of organic materials in revolutionizing lithium-ion battery technology.

Downloads

Download data is not yet available.

References

Rimsha Mehek, Naseem Iqbal, Tayyaba Noor, M Zain Bin Amjad, Ghulam Ali, K Vignarooban, and M Abdullah Khan. “Metal–organic framework based electrode materials for lithium-ion batteries: a review”. In: RSC advances 11.47 (2021), pp. 29247–29266. DOI: https://doi.org/10.1039/D1RA05073G

Ki Chul Kim. “Design strategies for promising organic positive electrodes in lithium-ion batteries: quinones and carbon materials”. In: Industrial & Engineering Chemistry Research 56.42 (2017), pp. 12009–12023. DOI: https://doi.org/10.1021/acs.iecr.7b03109

Yanliang Liang, Zhanliang Tao, and Jun Chen. “Organic electrode materials for rechargeable lithium batteries”. In: Advanced Energy Materials 2.7 (2012), pp. 742–769. DOI: https://doi.org/10.1002/aenm.201100795

Friedrich Stephanie and Louisa Karl. “Incorporating Renewable Energy Systems for a New Era of Grid Stability”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 1.1 (2020), pp. 37–49.

Hao Wang, Chang-Jiang Yao, Hai-Jing Nie, Ke-Zhi Wang, Yu-Wu Zhong, Pengwan Chen, Shilin Mei, and Qichun Zhang. “Recent progress in carbonyl-based organic polymers as promising electrode materials for lithium-ion batteries (LIBs)”. In: Journal of Materials Chemistry A 8.24 (2020), pp. 11906–11922. DOI: https://doi.org/10.1039/D0TA03321A

Manik E Bhosale, Sudong Chae, Ji Man Kim, and Jae-Young Choi. “Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries”. In: Journal of Materials Chemistry A 6.41 (2018), pp. 19885–19911. DOI: https://doi.org/10.1039/C8TA04906H

YP Wu, Elke Rahm, and Rudolf Holze. “Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries”. In: Electrochimica Acta 47.21 (2002), pp. 3491–3507. DOI: https://doi.org/10.1016/S0013-4686(02)00317-1

Nakamura Shuto, Akari Chiyo, Himari Ken, and Sato Tanaka. “Quantum Materials to the Pioneering Future of Computing and Communication”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 1.1 (2020), pp. 50–62.

Yuan Chen and Chengliang Wang. “Designing high performance organic batteries”. In: Accounts of Chemical Research 53.11 (2020), pp. 2636–2647. DOI: https://doi.org/10.1021/acs.accounts.0c00465

Birgit Esser, Franck Dolhem, Matthieu Becuwe, Philippe Poizot, Alexandru Vlad, and Daniel Brandell. “A perspective on organic electrode materials and technologies for next generation batteries”. In: Journal of Power Sources 482 (2021), p. 228814. DOI: https://doi.org/10.1016/j.jpowsour.2020.228814

Yong Lu and Jun Chen. “Prospects of organic electrode materials for practical lithium batteries”. In: Nature Reviews Chemistry 4.3 (2020), pp. 127–142. DOI: https://doi.org/10.1038/s41570-020-0160-9

Wu Lin, Tsai Huang, Hsu Chang, Chang Lee, and David Wang. “Unlocking the Potential of BCI: An extensive Guide to Neural Engineering”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 1.2 (2020), pp. 73–84.

Yong Lu, Qiu Zhang, Lin Li, Zhiqiang Niu, and Jun Chen. “Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries”. In: Chem 4.12 (2018), pp. 2786–2813. DOI: https://doi.org/10.1016/j.chempr.2018.09.005

Tao Sun, Jian Xie, Wei Guo, Dong-Sheng Li, and Qichun Zhang. “Covalent–organic frameworks: advanced organic electrode materials for rechargeable batteries”. In: Advanced Energy Materials 10.19 (2020), p. 1904199. DOI: https://doi.org/10.1002/aenm.201904199

Qing Zhao, Jianbin Wang, Chengcheng Chen, Ting Ma, and Jun Chen. “Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries”. In: Nano Research 10 (2017), pp. 4245–4255. DOI: https://doi.org/10.1007/s12274-017-1580-9

Adrichem De Jong, Mark Jansen, Jeffrey Van Dijk, and Johannes Meyer. “Analysis of Innovative Practices in Advanced Materials and Structural Engineering”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 2.1 (2021), pp. 178–188.

Sechan Lee, Giyun Kwon, Kyojin Ku, Kyungho Yoon, Sung-Kyun Jung, Hee-Dae Lim, and Kisuk Kang. “Recent progress in organic electrodes for Li and Na rechargeable batteries”. In: Advanced materials 30.42 (2018), p. 1704682. DOI: https://doi.org/10.1002/adma.201704682

Xiuping Yin, Samrat Sarkar, Shanshan Shi, Qiu-An Huang, Hongbin Zhao, Liuming Yan, Yufeng Zhao, and Jiujun Zhang. “Recent progress in advanced organic electrode materials for sodiumion batteries: synthesis, mechanisms, challenges and perspectives”. In: Advanced Functional Materials 30.11 (2020), p. 1908445. DOI: https://doi.org/10.1002/adfm.201908445

Kai-Xue Wang, Xin-Hao Li, and Jie-Sheng Chen. “Surface and interface engineering of electrode materials for lithium-ion batteries”. In: Advanced Materials 27.3 (2015), pp. 527–545. DOI: https://doi.org/10.1002/adma.201402962

Blenda Johansson, Elvira Eriksson, Nellie Berglund, and Ingrid Lindgren. “Robotic Surgery: Review on Minimally Invasive Techniques”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 2.2 (2021), pp. 201–210.

Zhiqiang Zhu and Jun Chen. “Advanced carbon-supported organic electrode materials for lithium (sodium)-ion batteries”. In: Journal of the Electrochemical Society 162.14 (2015), A2393. DOI: https://doi.org/10.1149/2.0031514jes

Amit Mishra, Akansha Mehta, Soumen Basu, Shweta J Malode, Nagaraj P Shetti, Shyam S Shukla, Mallikarjuna N Nadagouda, and Tejraj M Aminabhavi. “Electrode materials for lithiumion batteries”. In: Materials Science for Energy Technologies 1.2 (2018), pp. 182–187. DOI: https://doi.org/10.1016/j.mset.2018.08.001

Danying Xu, Minxia Liang, Shuo Qi, Weiwei Sun, Li-Ping Lv, Fei-Hu Du, Baofeng Wang, Shuangqiang Chen, Yong Wang, and Yan Yu. “The progress and prospect of tunable organic molecules for organic lithium-ion batteries”. In: ACS nano 15.1 (2020), pp. 47–80. DOI: https://doi.org/10.1021/acsnano.0c05896

Ishaan Jain, Anjali Reddy, and Nila Rao. “The Widespread Environmental and Health Effects of Microplastics Pollution Worldwide”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 2.2 (2021), pp. 224–234.

John J Shea and Chao Luo. “Organic electrode materials for metal ion batteries”. In: ACS applied materials & interfaces 12.5 (2020), pp. 5361–5380. DOI: https://doi.org/10.1021/acsami.9b20384

Jian Xie and Qichun Zhang. “Recent progress in rechargeable lithium batteries with organic materials as promising electrodes”. In: Journal of Materials Chemistry A 4.19 (2016), pp. 7091–7106. DOI: https://doi.org/10.1039/C6TA01069E

Cuiping Han, Jiaxiong Zhu, Chunyi Zhi, and Hongfei Li. “The rise of aqueous rechargeable batteries with organic electrode materials”. In: Journal of Materials Chemistry A 8.31 (2020), pp. 15479–15512. DOI: https://doi.org/10.1039/D0TA03947K

Sarah Afiq, Maryam Fikri, Rahman Ethan, and Amsyar Isfahann. “Acknowledging the Role of Buck Converter in DC-DC Conversion”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 3.1 (2022), pp. 287–301.

Bernhard Häupler, Andreas Wild, and Ulrich S Schubert. “Carbonyls: powerful organic materials for secondary batteries”. In: Advanced Energy Materials 5.11 (2015), p. 1402034. DOI: https://doi.org/10.1002/aenm.201402034

Cécil Combelles, M Ben Yahia, Laurent Pedesseau, and M-L Doublet. “Design of Electrode Materials for Lithium-Ion Batteries: The Example of Metal- Organic Frameworks”. In: The Journal of Physical Chemistry C 114.20 (2010), pp. 9518–9527. DOI: https://doi.org/10.1021/jp1016455

Yugen Zhang, Jinquan Wang, and Siti Nurhanna Riduan. “Strategies toward improving the performance of organic electrodes in rechargeable lithium (sodium) batteries”. In: Journal of Materials Chemistry A 4.39 (2016), pp. 14902–14914. DOI: https://doi.org/10.1039/C6TA05231B

Guilherme Marques, Francisco Gonçalves, Marco Gomes, and Beatriz Pereira. “Observations Biomedicals in Veterinary Pathobiology”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 3.2 (2022), pp. 316–328.

Laurence Croguennec and M Rosa Palacin. “Recent achievements on inorganic electrode materials for lithium-ion batteries”. In: Journal of the American Chemical Society 137.9 (2015), pp. 3140–3156. DOI: https://doi.org/10.1021/ja507828x

Cara N Gannett, Luis Melecio-Zambrano, Monica Jo Theibault, Brian M Peterson, Brett P Fors, and Héctor D Abruña. “Organic electrode materials for fast-rate, high-power battery applications”. In: Materials Reports: Energy 1.1 (2021), p. 100008. DOI: https://doi.org/10.1016/j.matre.2021.01.003

LJ Fu, Hao Liu, C Li, YP Wu, E Rahm, R Holze, and HQ Wu. “Surface modifications of electrode materials for lithium ion batteries”. In: Solid State Sciences 8.2 (2006), pp. 113–128. DOI: https://doi.org/10.1016/j.solidstatesciences.2005.10.019

Tereza Martin, Veronika Ondra, and Karolina Dominik. “The Role of Fiscal vs Monetary Policy in Modern Economics”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 3.2 (2022), pp. 329–341.

Takato Yokoji, Hiroshi Matsubara, and Masaharu Satoh. “Rechargeable organic lithium-ion batteries using electron-deficient benzoquinones as positive-electrode materials with high discharge voltages”. In: Journal of Materials Chemistry A 2.45 (2014), pp. 19347–19354. DOI: https://doi.org/10.1039/C4TA02812K

Yang Xu, Min Zhou, and Yong Lei. “Organic materials for rechargeable sodium-ion batteries”. In: Materials Today 21.1 (2018), pp. 60–78. DOI: https://doi.org/10.1016/j.mattod.2017.07.005

Anh Vu, Yuqiang Qian, and Andreas Stein. “Porous electrode materials for lithium-ion batteries–how to prepare them and what makes them special”. In: Advanced Energy Materials 2.9 (2012), pp. 1056–1085. DOI: https://doi.org/10.1002/aenm.201200320

Emilia Aleksi and Veera Leevi. “Discovering the Marvels and Intricacies of Physics & Astronomy: A Journey Through Fundamental Principles and Cosmic Phenomena”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 3.2 (2022), pp. 342–353.

Ranjusha Rajagopalan, Yougen Tang, Chuankun Jia, Xiaobo Ji, and Haiyan Wang. “Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions”. In: Energy & Environmental Science 13.6 (2020), pp. 1568–1592. DOI: https://doi.org/10.1039/C9EE03637G

Benjamin Flamme, Gonzalo Rodriguez Garcia, Marcel Weil, Mansour Haddad, Phannarath Phansavath, Virginie Ratovelomanana-Vidal, and Alexandre Chagnes. “Guidelines to design organic electrolytes for lithium-ion batteries: environmental impact, physicochemical and electrochemical properties”. In: Green Chemistry 19.8 (2017), pp. 1828–1849. DOI: https://doi.org/10.1039/C7GC00252A

Alain Mauger, Christian Julien, Andrea Paolella, Michel Armand, and Karim Zaghib. “Recent progress on organic electrodes materials for rechargeable batteries and supercapacitors”. In: Materials 12.11 (2019), p. 1770. DOI: https://doi.org/10.3390/ma12111770

Downloads

Published

2023-07-10

How to Cite

Anastasia Klymenko, Snizhana Shevchenko, Rostislav Marchenko, & Dmitriy Tkachenko. (2023). Electrode Batteries: Organic Material’s influence on Lithium-Ion Battery Performance. Fusion of Multidisciplinary Research, An International Journal, 4(2), 458-470. https://doi.org/10.63995/SGCF3012