Mastering the Principles of Reinforcement Learning: Techniques, Applications, and Future Prospects
DOI:
https://doi.org/10.63995/AZUQ8110Keywords:
Deep reinforcement learning; Exploration-exploitation; Policy gradients; Q-learning; Transfer learning; Multi-agent systemsAbstract
Reinforcement learning (RL) is a pivotal branch of machine learning focused on training agents to make sequences of decisions by maximizing cumulative rewards in dynamic environments. This abstract delves into the fundamental principles of RL, encompassing key techniques such as Q-learning, policy gradients, and deep reinforcement learning, which integrate neural networks to handle complex, high-dimensional tasks. RL's applications are vast and varied, extending from robotics and autonomous systems to finance, healthcare, and gaming. Notable achievements include AlphaGo's victory over human champions and the optimization of trading strategies in financial markets. The abstract also examines the challenges in RL, such as the trade-off between exploration and exploitation, scalability, and the need for substantial computational resources and data. Furthermore, the future prospects of RL are discussed, highlighting advancements in transfer learning, multi-agent systems, and the integration of RL with other machine learning paradigms to create more robust and versatile AI systems. As research progresses, mastering RL principles will be crucial for developing intelligent systems capable of adaptive, real-time decision-making, ultimately driving innovation across various sectors and transforming the landscape of artificial intelligence.
Downloads
References
Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. “A brief survey of deep reinforcement learning”. In: arXiv preprint arXiv:1708.05866 (2017).
Vaishak Belle and Ioannis Papantonis. “Principles and practice of explainable machine learning”. In: Frontiers in big Data 4 (2021), p. 688969. DOI: https://doi.org/10.3389/fdata.2021.688969
Yang Xin, Lingshuang Kong, Zhi Liu, Yuling Chen, Yanmiao Li, Hongliang Zhu, Mingcheng Gao, Haixia Hou, and Chunhua Wang. “Machine learning and deep learning methods for cybersecurity”. In: Ieee access 6 (2018), pp. 35365–35381. DOI: https://doi.org/10.1109/ACCESS.2018.2836950
Yuxi Li. “Deep reinforcement learning: An overview”. In: arXiv preprint arXiv:1701.07274 (2017).
Marco A Wiering and Martijn Van Otterlo. “Reinforcement learning”. In: Adaptation, learning, and optimization 12.3 (2012), p. 729. DOI: https://doi.org/10.1007/978-3-642-27645-3
Haoyu Yuze and He Bo. “Microbiome Engineering: Role in Treating Human Diseases”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 1.1 (2020), pp. 14–24.
Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, Joelle Pineau, et al. “An introduction to deep reinforcement learning”. In: Foundations and Trends® in Machine Learning 11.3-4 (2018), pp. 219–354. DOI: https://doi.org/10.1561/2200000071
Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. “Deep reinforcement learning: A brief survey”. In: IEEE Signal Processing Magazine 34.6 (2017), pp. 26–38. DOI: https://doi.org/10.1109/MSP.2017.2743240
Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. “Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications”. In: IEEE transactions on cybernetics 50.9 (2020), pp. 3826–3839.
Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. “Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications”. In: IEEE transactions on cybernetics 50.9 (2020), pp. 3826–3839.
Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. “Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications”. In: IEEE transactions on cybernetics 50.9 (2020), pp. 3826–3839. DOI: https://doi.org/10.1109/TCYB.2020.2977374
Nesim Yilmaz, Tuncer Demir, Safak Kaplan, and Sevilin Demirci. “Demystifying Big Data Analytics in Cloud Computing”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 1.1 (2020), pp. 25–36.
Iqbal H Sarker. “Machine learning: Algorithms, real-world applications and research directions”. In: SN computer science 2.3 (2021), p. 160. DOI: https://doi.org/10.1007/s42979-021-00592-x
Yaohua Sun, Mugen Peng, Yangcheng Zhou, Yuzhe Huang, and Shiwen Mao. “Application of machine learning in wireless networks: Key techniques and open issues”. In: IEEE Communications Surveys & Tutorials 21.4 (2019), pp. 3072–3108. DOI: https://doi.org/10.1109/COMST.2019.2924243
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. “Humanlevel control through deep reinforcement learning”. In: nature 518.7540 (2015), pp. 529–533. DOI: https://doi.org/10.1038/nature14236
Peter Dayan and Nathaniel D Daw. “Decision theory, reinforcement learning, and the brain”. In: Cognitive, Affective, & Behavioral Neuroscience 8.4 (2008), pp. 429–453. DOI: https://doi.org/10.3758/CABN.8.4.429
Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David Silver, and Koray Kavukcuoglu. “Reinforcement learning with unsupervised auxiliary tasks”. In: arXiv preprint arXiv:1611.05397 (2016).
Jacob Oliver and William Mason. “Gene Variation: The Key to Understanding Pharmacogenomics and Drug Response Variability”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 1.2 (2020), pp. 97–109.
Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al. “Starcraft ii: A new challenge for reinforcement learning”. In: arXiv preprint arXiv:1708.04782 (2017).
Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. “Machine learning for fluid mechanics”. In: Annual review of fluid mechanics 52.1 (2020), pp. 477–508. DOI: https://doi.org/10.1146/annurev-fluid-010719-060214
Fotios Zantalis, Grigorios Koulouras, Sotiris Karabetsos, and Dionisis Kandris. “A review of machine learning and IoT in smart transportation”. In: Future Internet 11.4 (2019), p. 94.
Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. “Reinforcement learning in healthcare: A survey”. In: ACM Computing Surveys (CSUR) 55.1 (2021), pp. 1–36. DOI: https://doi.org/10.1145/3477600
Jingjing Wang, Chunxiao Jiang, Haijun Zhang, Yong Ren, Kwang-Cheng Chen, and Lajos Hanzo. “Thirty years of machine learning: The road to Pareto-optimal wireless networks”. In: IEEE Communications Surveys & Tutorials 22.3 (2020), pp. 1472–1514. DOI: https://doi.org/10.1109/COMST.2020.2965856
Bauyrzhan Satipaldy, Taigan Marzhan, Ulugbek Zhenis, and Gulbadam Damira. “Geotechnology in the Age of AI: The Convergence of Geotechnical Data Analytics and Machine Learning”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 2.1 (2021), pp. 136–151.
Jan Peters and Stefan Schaal. “Reinforcement learning of motor skills with policy gradients”. In: Neural networks 21.4 (2008), pp. 682–697. DOI: https://doi.org/10.1016/j.neunet.2008.02.003
Fotios Zantalis, Grigorios Koulouras, Sotiris Karabetsos, and Dionisis Kandris. “A review of machine learning and IoT in smart transportation”. In: Future Internet 11.4 (2019), p. 94. DOI: https://doi.org/10.3390/fi11040094
Konstantinos G Liakos, Patrizia Busato, Dimitrios Moshou, Simon Pearson, and Dionysis Bochtis. “Machine learning in agriculture: A review”. In: Sensors 18.8 (2018), p. 2674. DOI: https://doi.org/10.3390/s18082674
Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and Chelsea Finn. “Learning to adapt in dynamic, real-world environments through metareinforcement learning”. In: arXiv preprint arXiv:1803.11347 (2018).
Mauro Birattari and Janusz Kacprzyk. Tuning metaheuristics: a machine learning perspective. Vol. 197. Springer, 2009. DOI: https://doi.org/10.1007/978-3-642-00483-4_7
ChoHee Kim, Donghyun Gwan, and Minho Sena Nam. “Beyond the Atmosphere: The Revolution in Hypersonic Flight”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 2.1 (2021), pp. 152–163.
Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. “Molecular denovo design through deep reinforcement learning”. In: Journal of cheminformatics 9 (2017), pp. 1–14. DOI: https://doi.org/10.1186/s13321-017-0235-x
Jens Kober, J Andrew Bagnell, and Jan Peters. “Reinforcement learning in robotics: A survey”. In: The International Journal of Robotics Research 32.11 (2013), pp. 1238–1274. DOI: https://doi.org/10.1177/0278364913495721
B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yogamani, and Patrick Pérez. “Deep reinforcement learning for autonomous driving: A survey”. In: IEEE Transactions on Intelligent Transportation Systems 23.6 (2021), pp. 4909–4926. DOI: https://doi.org/10.1109/TITS.2021.3054625
David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. “A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play”. In: Science 362.6419 (2018), pp. 1140–1144. DOI: https://doi.org/10.1126/science.aar6404
Chengcheng Wang, Xipeng P Tan, Shu Beng Tor, and CS Lim. “Machine learning in additive manufacturing: State-of-the-art and perspectives”. In: Additive Manufacturing 36 (2020), p. 101538. DOI: https://doi.org/10.1016/j.addma.2020.101538
Ishaan Jain, Anjali Reddy, and Nila Rao. “The Widespread Environmental and Health Effects of Microplastics Pollution Worldwide”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 2.2 (2021), pp. 224–234.
Harry Surden. “Machine learning and law: An overview”. In: Research Handbook on Big Data Law (2021), pp. 171–184. DOI: https://doi.org/10.4337/9781788972826.00014
David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. “Mastering chess and shogi by self-play with a general reinforcement learning algorithm”. In: arXiv preprint arXiv:1712.01815 (2017).
Muhammad Usama, Junaid Qadir, Aunn Raza, Hunain Arif, Kok-Lim Alvin Yau, Yehia Elkhatib, Amir Hussain, and Ala Al-Fuqaha. “Unsupervised machine learning for networking: Techniques, applications and research challenges”. In: IEEE access 7 (2019), pp. 65579–65615. DOI: https://doi.org/10.1109/ACCESS.2019.2916648
Georgios A Kaissis, Marcus R Makowski, Daniel Rückert, and Rickmer F Braren. “Secure, privacy-preserving and federated machine learning in medical imaging”. In: Nature Machine Intelligence 2.6 (2020), pp. 305–311. DOI: https://doi.org/10.1038/s42256-020-0186-1
Matthew E Taylor and Peter Stone. “Transfer learning for reinforcement learning domains: A survey.” In: Journal of Machine Learning Research 10.7 (2009).
Sarah Afiq, Maryam Fikri, Rahman Ethan, and Amsyar Isfahann. “Acknowledging the Role of Buck Converter in DC-DC Conversion”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 3.1 (2022), pp. 287–301.
Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. “Offline reinforcement learning: Tutorial, review, and perspectives on open problems”. In: arXiv preprint arXiv:2005.01643 (2020).
Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. “A survey of optimization methods from a machine learning perspective”. In: IEEE transactions on cybernetics 50.8 (2019), pp. 3668–3681. DOI: https://doi.org/10.1109/TCYB.2019.2950779
David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. “Mastering the game of go without human knowledge”. In: nature 550.7676 (2017), pp. 354–359. DOI: https://doi.org/10.1038/nature24270
Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat, David Silver, and Thore Graepel. “A unified game-theoretic approach to multiagent reinforcement learning”. In: Advances in neural information processing systems 30 (2017).
Seyed Sajad Mousavi, Michael Schukat, and Enda Howley. “Deep reinforcement learning: an overview”. In: Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016: Volume 2. Springer. 2018, pp. 426–440. DOI: https://doi.org/10.1007/978-3-319-56991-8_32
Emilia Aleksi and Veera Leevi. “Discovering the Marvels and Intricacies of Physics & Astronomy: A Journey Through Fundamental Principles and Cosmic Phenomena”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 3.2 (2022), pp. 342–353.
Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. “Automatic differentiation in machine learning: a survey”. In: Journal of machine learning research 18.153 (2018), pp. 1–43.
Benjamin Sanchez-Lengeling and Alán Aspuru-Guzik. “Inverse molecular design using machine learning: Generative models for matter engineering”. In: Science 361.6400 (2018), pp. 360–365. DOI: https://doi.org/10.1126/science.aat2663
Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. “Grandmaster level in StarCraft II using multi-agent reinforcement learning”. In: nature 575.7782 (2019), pp. 350–354. DOI: https://doi.org/10.1038/s41586-019-1724-z
Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. “Learning to reinforcement learn”. In: arXiv preprint arXiv:1611.05763 (2016).
Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, Andrea Rocchetto, Simone Severini, and Leonard Wossnig. “Quantum machine learning: a classical perspective”. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474.2209 (2018), p. 20170551. DOI: https://doi.org/10.1098/rspa.2017.0551
Linnea Daniel, Sondre Robin, and Matthew Aleksander. “Future Facts: Unveiling Mental Health Issues in the Digital Age”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 3.2 (2022), pp. 354–365.
Jigar Patel, Sahil Shah, Priyank Thakkar, and Ketan Kotecha. “Predicting stock market index using fusion of machine learning techniques”. In: Expert systems with applications 42.4 (2015), pp. 2162–2172. DOI: https://doi.org/10.1016/j.eswa.2014.10.031
Keith T Butler, Daniel W Davies, Hugh Cartwright, Olexandr Isayev, and Aron Walsh. “Machine learning for molecular and materials science”. In: Nature 559.7715 (2018), pp. 547–555. DOI: https://doi.org/10.1038/s41586-018-0337-2
Benjamin Recht. “A tour of reinforcement learning: The view from continuous control”. In: Annual Review of Control, Robotics, and Autonomous Systems 2.1 (2019), pp. 253–279. DOI: https://doi.org/10.1146/annurev-control-053018-023825
Jenna Burrell. “How the machine ‘thinks’: Understanding opacity in machine learning algorithms”. In: Big data & society 3.1 (2016), p. 2053951715622512. DOI: https://doi.org/10.1177/2053951715622512
Taher M Ghazal, Mohammad Kamrul Hasan, Muhammad Turki Alshurideh, Haitham M Alzoubi, Munir Ahmad, Syed Shehryar Akbar, Barween Al Kurdi, and Iman A Akour. “IoT for smart cities: Machine learning approaches in smart healthcare—A review”. In: Future Internet 13.8 (2021), p. 218. DOI: https://doi.org/10.3390/fi13080218
Fernanda Hernández, Leonardo Sánchez, Gabriela González, and Andrés Ramírez. “Revolutionizing CMOS VLSI with Innovative Memory Design Techniques”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 3.2 (2022), pp. 366–379.
Sebastian Raschka, Joshua Patterson, and Corey Nolet. “Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence”. In: Information 11.4 (2020), p. 193. DOI: https://doi.org/10.3390/info11040193
Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai, Yu-Feng Li, Wei-Wei Tu, Qiang Yang, and Yang Yu. “Taking human out of learning applications: A survey on automated machine learning”. In: arXiv preprint arXiv:1810.13306 31 (2018).
Emmanuel Gbenga Dada, Joseph Stephen Bassi, Haruna Chiroma, Adebayo Olusola Adetunmbi, Opeyemi Emmanuel Ajibuwa, et al. “Machine learning for email spam filtering: review, approaches and open research problems”. In: Heliyon 5.6 (2019). DOI: https://doi.org/10.1016/j.heliyon.2019.e01802
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
© The Author(s). Published by Fusion of Multidisciplinary Research, An International Journal (FMR), Netherlands.
This is an open-access article distributed under the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.