Protein Structure Prediction Tools and Computational Approaches

Authors

  • Natalia Garavano Ca tedra de Fisiologõ a Humana, Facultad de Ciencias Quõ micas, Universidad Nacional de Co Author
  • Francisca Sadosky Ca tedra de Fisiologõ a Humana, Facultad de Ciencias Quõ micas, Universidad Nacional de Co rdoba, Casilla de Correo 61, 5000 Co rdoba, Argentina Author
  • Facundo Bulgheroni Ca tedra de Fisiologõ a Humana, Facultad de Ciencias Quõ micas, Universidad Nacional de Co rdoba, Casilla de Correo 61, 5000 Co rdoba, Argentina Author

DOI:

https://doi.org/10.63995/MWCU4408

Keywords:

Ab initio modelling; AlphaFold; Bioinformatics; Homology modelling; Machine learning; Molecular dynamics simulations; Protein structure prediction

Abstract

Protein structure prediction is a critical aspect of bioinformatics, aimed at determining the three-dimensional configuration of proteins from their amino acid sequences. With the advent of sophisticated computational approaches, this field has seen significant advancements. Methods like homology modeling, which relies on the similarity between the target protein and known structures, and ab initio modeling, which predicts structures from scratch, have become fundamental tools. Additionally, molecular dynamics simulations and machine learning techniques, such as AlphaFold, have revolutionized the accuracy and speed of predictions. These tools not only enhance our understanding of protein functions and interactions but also facilitate drug discovery and development. The integration of these computational approaches with experimental data is paving the way for more precise and reliable protein structure predictions, ultimately contributing to advancements in various scientific and medical fields.

Downloads

Download data is not yet available.

References

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. “Accurate prediction of protein structures and interactions using a three-track neural network”. In: Science 373.6557 (2021), pp. 871–876. DOI: https://doi.org/10.1126/science.abj8754

Lorenza Bordoli, Florian Kiefer, Konstantin Arnold, Pascal Benkert, James Battey, and Torsten Schwede. “Protein structure homology modeling using SWISS-MODEL workspace”. In: Nature protocols 4.1 (2009), pp. 1–13. DOI: https://doi.org/10.1038/nprot.2008.197

Hanka Venselaar, Tim AH Te Beek, Remko KP Kuipers, Maarten L Hekkelman, and Gert Vriend. “Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces”. In: BMC bioinformatics 11 (2010), pp. 1–10. DOI: https://doi.org/10.1186/1471-2105-11-548

Oliver Ava, Muhammad Oscar, and Tommy George. “The Impact and Prevention of Latch-up in CMOS in VLSI Design”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 1.1 (2020), pp. 1–13.

Yang Zhang. “I-TASSER server for protein 3D structure prediction”. In: BMC bioinformatics 9 (2008), pp. 1–8. DOI: https://doi.org/10.1186/1471-2105-9-40

Konstantin Arnold, Lorenza Bordoli, Jürgen Kopp, and Torsten Schwede. “The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling”. In: Bioinformatics 22.2 (2006), pp. 195–201. DOI: https://doi.org/10.1093/bioinformatics/bti770

Pascal Benkert, Marco Biasini, and Torsten Schwede. “Toward the estimation of the absolute quality of individual protein structure models”. In: Bioinformatics 27.3 (2011), pp. 343–350. DOI: https://doi.org/10.1093/bioinformatics/btq662

Haoyu Yuze and He Bo. “Microbiome Engineering: Role in Treating Human Diseases”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 1.1 (2020), pp. 14–24.

Debora S Marks, Lucy J Colwell, Robert Sheridan, Thomas A Hopf, Andrea Pagnani, Riccardo Zecchina, and Chris Sander. “Protein 3D structure computed from evolutionary sequence variation”. In: PloS one 6.12 (2011), e28766. DOI: https://doi.org/10.1371/journal.pone.0028766

Jianyi Yang and Yang Zhang. “I-TASSER server: new development for protein structure and function predictions”. In: Nucleic acids research 43.W1 (2015), W174–W181. DOI: https://doi.org/10.1093/nar/gkv342

Seth Cooper, Firas Khatib, Adrien Treuille, Janos Barbero, Jeehyung Lee, Michael Beenen, Andrew Leaver-Fay, David Baker, Zoran Popović, et al. “Predicting protein structures with a multiplayer online game”. In: Nature 466.7307 (2010), pp. 756–760. DOI: https://doi.org/10.1038/nature09304

Henry H. James, Razu Pawel, and Gawin Saduf. “Autonomous Vehicles and Robust DecisionMaking in Dynamic Environments”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 1.2 (2020), pp. 110–121.

Matthew P Jacobson, David L Pincus, Chaya S Rapp, Tyler JF Day, Barry Honig, David E Shaw, and Richard A Friesner. “A hierarchical approach to all-atom protein loop prediction”. In: Proteins: Structure, Function, and Bioinformatics 55.2 (2004), pp. 351–367. DOI: https://doi.org/10.1002/prot.10613

James C Whisstock and Arthur M Lesk. “Prediction of protein function from protein sequence and structure”. In: Quarterly reviews of biophysics 36.3 (2003), pp. 307–340. DOI: https://doi.org/10.1017/S0033583503003901

V Srinivasa Rao, K Srinivas, GN Sujini, and GN Sunand Kumar. “Protein-protein interaction detection: methods and analysis”. In: International journal of proteomics 2014.1 (2014), p. 147648. DOI: https://doi.org/10.1155/2014/147648

Jimeno Estanislau, Federico Hermogenes, and Bernardo Clemente. “Battery Energy Transformation and Unravelling the Thermodynamics of Energy Storage and Conversion”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 2.1 (2021), pp. 122–135.

Min-yi Shen and Andrej Sali. “Statistical potential for assessment and prediction of protein structures”. In: Protein science 15.11 (2006), pp. 2507–2524. DOI: https://doi.org/10.1110/ps.062416606

Predrag Radivojac, Wyatt T Clark, Tal Ronnen Oron, Alexandra M Schnoes, Tobias Wittkop, Artem Sokolov, Kiley Graim, Christopher Funk, Karin Verspoor, Asa Ben-Hur, et al. “A largescale evaluation of computational protein function prediction”. In: Nature methods 10.3 (2013), pp. 221–227.

Kathryn Tunyasuvunakool, Jonas Adler, Zachary Wu, Tim Green, Michal Zielinski, Augustin Žídek, Alex Bridgland, Andrew Cowie, Clemens Meyer, Agata Laydon, et al. “Highly accurate protein structure prediction for the human proteome”. In: Nature 596.7873 (2021), pp. 590–596. DOI: https://doi.org/10.1038/s41586-021-03828-1

Bauyrzhan Satipaldy, Taigan Marzhan, Ulugbek Zhenis, and Gulbadam Damira. “Geotechnology in the Age of AI: The Convergence of Geotechnical Data Analytics and Machine Learning”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 2.1 (2021), pp. 136–151.

Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin Žídek, Alexander WR Nelson, Alex Bridgland, et al. “Improved protein structure prediction using potentials from deep learning”. In: Nature 577.7792 (2020), pp. 706–710. DOI: https://doi.org/10.1038/s41586-019-1923-7

Jianyi Yang, Ivan Anishchenko, Hahnbeom Park, Zhenling Peng, Sergey Ovchinnikov, and David Baker. “Improved protein structure prediction using predicted interresidue orientations”. In: Proceedings of the National Academy of Sciences 117.3 (2020), pp. 1496–1503. DOI: https://doi.org/10.1073/pnas.1914677117

Jianlin Cheng, Arlo Z Randall, Michael J Sweredoski, and Pierre Baldi. “SCRATCH: a protein structure and structural feature prediction server”. In: Nucleic acids research 33.suppl_2 (2005), W72–W76. DOI: https://doi.org/10.1093/nar/gki396

ChoHee Kim, Donghyun Gwan, and Minho Sena Nam. “Beyond the Atmosphere: The Revolution in Hypersonic Flight”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 2.1 (2021), pp. 152–163.

Alexey Drozdetskiy, Christian Cole, James Procter, and Geoffrey J Barton. “JPred4: a protein secondary structure prediction server”. In: Nucleic acids research 43.W1 (2015), W389–W394. DOI: https://doi.org/10.1093/nar/gkv332

Nicolas Guex, Manuel C Peitsch, and Torsten Schwede. “Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective”. In: Electrophoresis 30.S1 (2009), S162–S173. DOI: https://doi.org/10.1002/elps.200900140

Ambrish Roy, Alper Kucukural, and Yang Zhang. “I-TASSER: a unified platform for automated protein structure and function prediction”. In: Nature protocols 5.4 (2010), pp. 725–738. DOI: https://doi.org/10.1038/nprot.2010.5

Chung Yip, Lokyi Seol, and Xu Zhu Hon. “A Step-by-Step Approach to Partial Differential Equations”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 3.1 (2022), pp. 302–315.

Marc A Martí-Renom, Ashley C Stuart, András Fiser, Roberto Sánchez, Francisco Melo, and Andrej Šali. “Comparative protein structure modeling of genes and genomes”. In: Annual review of biophysics and biomolecular structure 29.1 (2000), pp. 291–325. DOI: https://doi.org/10.1146/annurev.biophys.29.1.291

Lawrence A Kelley and Michael JE Sternberg. “Protein structure prediction on the Web: a case study using the Phyre server”. In: Nature protocols 4.3 (2009), pp. 363–371. DOI: https://doi.org/10.1038/nprot.2009.2

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. “Highly accurate protein structure prediction with AlphaFold”. In: nature 596.7873 (2021), pp. 583–589. DOI: https://doi.org/10.1038/s41586-021-03819-2

Linnea Daniel, Sondre Robin, and Matthew Aleksander. “Future Facts: Unveiling Mental Health Issues in the Digital Age”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 3.2 (2022), pp. 354–365.

Gregory Sliwoski, Sandeepkumar Kothiwale, Jens Meiler, and Edward W Lowe. “Computational methods in drug discovery”. In: Pharmacological reviews 66.1 (2014), pp. 334–395. DOI: https://doi.org/10.1124/pr.112.007336

Carol A Rohl, Charlie EM Strauss, Kira MS Misura, and David Baker. “Protein structure prediction using Rosetta”. In: Methods in enzymology. Vol. 383. Elsevier, 2004, pp. 66–93. DOI: https://doi.org/10.1016/S0076-6879(04)83004-0

David E Kim, Dylan Chivian, and David Baker. “Protein structure prediction and analysis using the Robetta server”. In: Nucleic acids research 32.suppl_2 (2004), W526–W531. DOI: https://doi.org/10.1093/nar/gkh468

Fernanda Hernández, Leonardo Sánchez, Gabriela González, and Andrés Ramírez. “Revolutionizing CMOS VLSI with Innovative Memory Design Techniques”. In: Fusion of Multidisciplinary Research, An International Journal (FMR) 3.2 (2022), pp. 366–379.

David Baker and Andrej Sali. “Protein structure prediction and structural genomics”. In: Science 294.5540 (2001), pp. 93–96. DOI: https://doi.org/10.1126/science.1065659

Georg E Schulz and R Heiner Schirmer. Principles of protein structure. Springer Science & Business Media, 2013.

Roded Sharan, Igor Ulitsky, and Ron Shamir. “Network-based prediction of protein function”. In: Molecular systems biology 3.1 (2007), p. 88. DOI: https://doi.org/10.1038/msb4100129

Johannes Söding, Andreas Biegert, and Andrei N Lupas. “The HHpred interactive server for protein homology detection and structure prediction”. In: Nucleic acids research 33.suppl_2 (2005), W244–W248. DOI: https://doi.org/10.1093/nar/gki408

Downloads

Published

2023-07-25

How to Cite

Natalia Garavano, Francisca Sadosky, & Facundo Bulgheroni. (2023). Protein Structure Prediction Tools and Computational Approaches. Fusion of Multidisciplinary Research, An International Journal, 4(2), 498-509. https://doi.org/10.63995/MWCU4408